
 2002 Microchip Technology Inc. DS51288A

MPLAB® C18

C COMPILER

USER’S GUIDE

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.

• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.

The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.

• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical com-

ponents in life support systems is not authorized except with

express written approval by Microchip. No licenses are con-

veyed, implicitly or otherwise, under any intellectual property

rights.
DS51288A - page ii
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART and PRO MATE are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

AMPLAB, FilterLab, microID, MXDEV, MXLAB, PICMASTER,

SEEVAL and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,

FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,

ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,

MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select

Mode and Total Endurance are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2002, Microchip Technology Incorporated. Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2002 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

Table of Contents
Preface...1

Chapter 1. Introduction ..5

1.1 Overview .. 5

1.2 Invoking the Compiler .. 5
1.2.1 Creating Output Files ... 6
1.2.2 Displaying Diagnostics ... 6
1.2.3 Defining Macros ... 7
1.2.4 Selecting the Processor ... 7

Chapter 2. Language Specifics ...9

2.1 Data Types and Limits ... 9
2.1.1 Integer Types ... 9
2.1.2 Floating-Point Types .. 9

2.2 Data Type Storage - Endianness ... 10

2.3 Storage Classes ... 11
2.3.1 Overlay... 11
2.3.2 static Function Arguments ... 12

2.4 Storage Qualifiers .. 12
2.4.1 near/far Data Memory Objects .. 12
2.4.2 near/far Program Memory Objects.................................. 12
2.4.3 ram/rom Qualifiers.. 13

2.5 Include File Search Paths .. 13
2.5.1 System Header Files.. 13
2.5.2 User Header Files .. 13

2.6 Predefined Macro Names .. 14

2.7 ISO Divergences .. 14
2.7.1 Integer Promotions.. 14
2.7.2 Numeric Constants... 14
2.7.3 String Constants... 15

2.8 Language Extensions .. 17
2.8.1 Anonymous Structures... 17
2.8.2 Inline Assembly .. 18

2.9 Pragmas ... 19
2.9.1 #pragma sectiontype .. 19
2.9.2 #pragma interruptlow fname

#pragma interrupt fname ... 25
 2002 Microchip Technology Inc. apRNOUU^Jpage iii

MPLAB® C18 C Compiler User’s Guide
2.9.3 #pragma varlocate bank variable-name
#pragma varlocate section-name variable-name29

2.10 Processor-Specific Header Files ..30

2.11 Processor-Specific Register Definitions Files32

2.12 Configuration Words ...32

Chapter 3. Runtime Model ... 33

3.1 Memory Models ..33

3.2 Calling Conventions ...34
3.2.1 Return Values...35
3.2.2 Managing the Software Stack..36
3.2.3 Mixing C and Assembly ..36

3.3 Startup Code ..41
3.3.1 Default Behavior ...41
3.3.2 Customization...42

3.4 Compiler-Managed Resources ...42

Chapter 4. Optimizations ... 43

4.1 Duplicate String Merging...43

4.2 Branches ...44

4.3 Banking ...44

4.4 WREG Content Tracking...45

4.5 Code Straightening..45

4.6 Tail Merging...46

4.7 Unreachable Code Removal ...47

4.8 Copy Propagation..47

4.9 Redundant Store Removal ..48

4.10 Dead Code Removal ...48

4.11 Procedural Abstraction ..49

Chapter 5. Sample Application ... 51

Appendix A. COFF File Format ... 55

Appendix B. ANSI Implementation-Defined Behavior 71

Appendix C. Command-Line Summary.. 75

Appendix D. MPLAB C18 Diagnostics.. 77

Glossary ... 91

Index ... 95

Worldwide Sales and Service ... 100
apRNOUU^-page iv  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Preface
INTRODUCTION

This document discusses the technical details of the MPLAB C18 compiler. This

document will explain all functionality of the MPLAB C18 compiler. It assumes that the

programmer already:

• knows how to write C programs

• knows how to use the MPLAB Integrated Development Environment (IDE) to

create and debug projects

• has read and understands the processor data sheet for which code is being

written

ABOUT THIS GUIDE

Document Layout

The document layout is as follows:

• Chapter 1: Provides an overview of the MPLAB C18 compiler and information on

invoking the compiler.

• Chapter 2: Discusses how the MPLAB C18 compiler differs from the ANSI

standard.

• Chapter 3: Discusses how the MPLAB C18 compiler utilizes the resources of the

PIC18 PICmicro® microcontrollers.

• Chapter 4: Discusses the optimizations that are performed by the MPLAB C18

compiler.

• Chapter 5: Provides a sample application and describes the source code with

references to the specific topics discussed in the User's Guide.
 2002 Microchip Technology Inc. apRNOUU^-page 1

MPLAB® C18 C Compiler User’s Guide
Conventions Used in this Guide

This User's Guide uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

RECOMMENDED READING

PIC18 Development References

MPLAB C18 Getting Started Guide (DS51295) describes how to install the MPLAB

C18 compiler, how to write simple programs and how to use the MPLAB IDE with the

compiler.

MPLAB C18 Compiler Libraries (DS51297) lists all library functions provided with the

MPLAB C18 compiler with detailed descriptions of their use.

MPLAB IDE User's Guide (DS51025) describes how to use the MPLAB IDE, including

how to create projects and debug projects.

MPLAB IDE V6.XX Quick Start Guide (DS51281) describes how to set up the MPLAB

IDE software and use it to create projects and program devices.

MPASM User's Guide with MPLINK and MPLIB (DS33014) describes how to use the

Microchip PICmicro MCU assembler (MPASM), linker (MPLINK) and librarian (MPLIB).

Technical Library CD-ROM (DS00161) contains comprehensive application notes,

data sheets and technical briefs for all Microchip products.

To obtain any of the above listed documents, contact the nearest Microchip Sales and

Service location (see back page) or visit the Microchip web site (www.microchip.com)

to retrieve these documents in Adobe Acrobat (.pdf) format.

Description Represents Examples

Code (Courier font):

Courier font Sample source code distance -= time * speed;

Filenames and paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Italic Courier

font

Variable name argument file.o, where file can be any valid file name

Square

brackets []

Optional arguments mcc18 [options] file [options]

Ellipses... Replaces repeated

instances of text

var_name [, var_name...]

Represents code

supplied by user.

void main (void)
{ ...
}

0xnnnn A hexadecimal number

where n is a hexadecimal
digit

0xFFFF, 0x007A

Documents (Arial font):

Italic characters Referenced books MPLAB User’s Guide
apRNOUU^-page 2  2002 Microchip Technology Inc.

Preface
C References

American National Standard for Information Systems – Programming Language – C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,

New York, 10036.

This standard specifies the form and establishes the interpretation of programs

expressed in the programming language C. Its purpose is to promote portability,

reliability, maintainability and efficient execution of C language programs on a

variety of computing systems.

Beatman, John B. Embedded Design with the PIC18F452 Microcontroller, First

Edition. Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Focuses on Microchip Technology’s PIC18FXXX family and writing enhanced

application code.

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition.

Prentice-Hall, Englewood Cliffs, New Jersey 07632.

Covers the C programming language in great detail. This book is an authoritative

reference manual that provides a complete description of the C language, the

run-time libraries and a style of C programming that emphasizes correctness,

portability and maintainability.

Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language, Second

Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Presents a concise exposition of C as defined by the ANSI standard. This book is

an excellent reference for C programmers.

Kochan, Steven G. Programming In ANSI C, Revised Edition. Hayden Books,

Indianapolis, Indiana 46268.

Another excellent reference for learning ANSI C, used in colleges and universities.

Van Sickle, Ted. Programming Microcontrollers in C, First Edition. LLH Technology

Publishing, Eagle Rock, Virginia 24085.

Although this book focuses on Motorola microcontrollers, the basic principles of

programming with C for microcontrollers is useful.
 2002 Microchip Technology Inc. apRNOUU^-page 3

MPLAB® C18 C Compiler User’s Guide
NOTES:
apRNOUU^-page 4  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Chapter 1. Introduction
1.1 OVERVIEW

The MPLAB C18 compiler is a free-standing, optimizing ANSI C compiler for the PIC18

PICmicro microcontrollers (MCU). The compiler deviates from the ANSI standard

X3.159-1989 only where the standard conflicts with efficient PICmicro MCU support.

The compiler is a 32-bit Windows® console application and is fully compatible with

Microchip's MPLAB IDE, allowing source-level debugging with the MPLAB ICE

in-circuit emulator, the MPLAB ICD 2 in-circuit debugger or the MPLAB SIM simulator.

The MPLAB C18 compiler has the following features:

• ANSI '89 compatibility

• Integration with the MPLAB IDE for easy-to-use project management and

source-level debugging

• Generation of relocatable object modules for enhanced code reuse

• Compatibility with object modules generated by the MPASM assembler, allowing

complete freedom in mixing assembly and C programming in a single project

• Transparent read/write access to external memory

• Strong support for inline assembly when total control is absolutely necessary

• Efficient code generator engine with multi-level optimization

• Extensive library support, including PWM, SPI, I2C, UART, USART, string

manipulation and math libraries

• Full user-level control over data and code memory allocation

1.2 INVOKING THE COMPILER

The MPLAB C18 Getting Started Guide (DS51295) describes how to use the compiler

with the MPLAB IDE. The compiler can also be invoked from the command line. The

command-line usage is:

mcc18 [options] file [options]

A single source file and any number of command-line options can be specified. The

--help command-line option lists all command-line options accepted by the compiler.

The -verbose command-line option causes the compiler to show a banner containing

the version number and the total number of errors, warnings and messages upon

completion.
 2002 Microchip Technology Inc. apRNOUU^-page 5

MPLAB® C18 C Compiler User’s Guide
1.2.1 Creating Output Files

By default, the compiler will generate an output object file named file.o, where file
is the name of the source file specified on the command line minus the extension. The

output object file name can be overridden with the -fo command-line option. For

example:

mcc18 -fo bar.o foo.c

If the source file contains errors, then the compiler generates an error file named

file.err, where file is the name of the source file specified on the command line

minus the extension. The error file name can be overridden using the -fe

command-line option. For example:

mcc18 -fe bar.err foo.c

1.2.2 Displaying Diagnostics

Diagnostics can be controlled using the -w and -nw command-line options. The -w

command-line option sets the level of warning diagnostics (1, 2 or 3). Table 1-1

shows the level of warning diagnostics and the type of diagnostics that are shown. The

-nw command-line option suppresses specific messages (Appendix D or the
--help-message-list command-line option lists all messages generated by the

compiler). Help on all messages can be seen using the --help-message-all

command-line option. For help on a specific diagnostic, the --help-message

command-line option can be used. For example:

mcc18 --help-message=2068

displays the following results:

2068: obsolete use of implicit 'int' detected.

The ANSI standard allows a variable to be declared without a base type
being specified, e.g., “extern x;”, in which case a base type of 'int'
is implied. This usage is deprecated by the standard as obsolete, and
therefore a diagnostic is issued to that effect.

TABLE 1-1: WARNING LEVELS

Warning Level Diagnostics Shown

1 Errors (fatal and non-fatal)

2 Level 1 plus warnings

3 Level 2 plus messages
apRNOUU^-page 6  2002 Microchip Technology Inc.

Introduction
1.2.3 Defining Macros

The -D command-line option allows a macro to be defined. The -D command-line

option can be specified in one of two ways: -Dname or -Dname=value. -Dname defines

the macro name with 1 as its definition. -Dname=value defines the macro name with

value as its definition. For example:

mcc18 -DMODE

defines the macro MODE to have a value of 1, whereas:

mcc18 -DMODE=2

defines the macro MODE to have a value of 2.

An instance of utilizing the -D command-line option is in conditional compilation of

code. For example:

#if MODE == 1
x = 5;

#elif MODE == 2
x = 6;

#else
x = 7;

#endif

1.2.4 Selecting the Processor

By default, MPLAB C18 compiles an application for a generic PIC18 PICmicro

microcontroller. The object file can be limited to a specific processor with the

-pprocessor command-line option, where processor specifies the particular
processor to utilize. For example, to limit an object file for use with only the PIC18F452,

the command-line option -p18f452 should be used. The command-line option -p18cxx

explicitly specifies that the source is being compiled for a generic PIC18 PICmicro

microcontroller.

Note: Other command-line options are discussed throughout the User’s Guide,

and a summary of all the command-line options can be found in

Appendix C.
 2002 Microchip Technology Inc. apRNOUU^-page 7

MPLAB® C18 C Compiler User’s Guide
NOTES:
apRNOUU^-page 8  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Chapter 2. Language Specifics
2.1 DATA TYPES AND LIMITS

2.1.1 Integer Types

The MPLAB C18 compiler supports the standard ANSI-defined integer types. The

ranges of the standard integer types are documented in Table 2-1. In addition, MPLAB

C18 supports a 24-bit integer type short long int (or long short int), in both a

signed and unsigned variety. The ranges of this type are also documented in Table 2-1.

TABLE 2-1: INTEGER DATA TYPE SIZES AND LIMITS

2.1.2 Floating-Point Types

32-bit floating-point types are native to MPLAB C18 using either the double or float

data types. The ranges of the floating-point type are documented in Table 2-2.

TABLE 2-2: FLOATING-POINT DATA TYPE SIZES AND LIMITS

Type Size Minimum Maximum

char1,2 8 bits -128 127

signed char 8 bits -128 127

unsigned char 8 bits 0 255

int 16 bits -32768 32767

unsigned int 16 bits 0 65535

short 16 bits -32768 32767

unsigned short 16 bits 0 65535

short long 24 bits -8,388,608 8,388,607

unsigned short long 24 bits 0 16,777,215

long 32 bits -2,147,483,648 2,147,483,647

unsigned long 32 bits 0 4,294,967,295

Note 1: A plain char is signed by default.

2: A plain char may be unsigned by default via the -k command-line option.

Type Size
Minimum

Exponent

Maximum

Exponent
Minimum Normalized Maximum Normalized

float 32 bits -126 128 2–126 ≈ 1.17549435e - 38 2128 * (2-2–15) ≈ 6.80564693e + 38

double 32 bits -126 128 2–126 ≈ 1.17549435e - 38 2128 * (2-2–15) ≈ 6.80564693e + 38
 2002 Microchip Technology Inc. apRNOUU^-page 9

MPLAB® C18 C Compiler User’s Guide
The MPLAB C18 format for floating-point numbers is a modified form of the IEEE 754

format. The difference between the MPLAB C18 format and the IEEE 754 format

consists of a rotation of the top nine bits of the representation. A left rotate will convert

from the IEEE 754 format to the MPLAB C18 format. A right rotate will convert from the

MPLAB C18 format to the IEEE 754 format. Table 2-3 compares the two formats.

TABLE 2-3: MPLAB C18 FLOATING-POINT VS. IEEE 754 FORMAT

2.2 DATA TYPE STORAGE - ENDIANNESS

Endianness refers to the ordering of bytes in a multi-byte value. MPLAB C18 stores

data in little-endian format. Bytes at lower addresses have lower significance (the value

is stored “little-end-first”). For example:

#pragma idata test=0x0200
long l=0xAABBCCDD;

results in a memory layout as follows:

Standard Exponent Byte Byte 0 Byte 1 Byte 2

IEEE 754 se0e1e2e3e4e5e6 e7ddd dddd dddd dddd dddd dddd

MPLAB C18 e0e1e2e3e4e5e6e7 sddd dddd dddd dddd dddd dddd

Legend: s = sign bit

d = mantissa

e = exponent

Address 0x0200 0x0201 0x0202 0x0203

Content 0xDD 0xCC 0xBB 0xAA
apRNOUU^-page 10  2002 Microchip Technology Inc.

Language Specifics
2.3 STORAGE CLASSES

MPLAB C18 supports the ANSI standard storage classes (auto, extern, register,

static and typedef).

2.3.1 Overlay

The MPLAB C18 compiler introduces a storage class of overlay. The overlay storage

class may be applied to local variables (but not formal parameters, function definitions

or global variables). The overlay storage class will allocate the associated symbols

into a function-specific, static overlay section. Such a variable will be allocated

statically, but initialized upon each function entry. For example, in:

void f (void)
{
 overlay int x = 5;
 x++;
}

x will be initialized to 5 upon each function entry, although its storage will be statically

allocated. If no initializer is present, then its value upon function entry is undefined.

The MPLINK linker will attempt to overlay local storage specified as overlay from

functions that are guaranteed not to be active simultaneously. For example, in:

int f (void)
{
 overlay int x = 1;
 return x;
}

int g (void)
{
 overlay int y = 2;
 return y;
}

if f and g will never be active at the same time, x and y become candidates for sharing

the same memory location. However, in:

int f (void)
{
 overlay int x = 1;
 return x;
}

int g (void)
{
 overlay int y = 2;
 y = f ();
 return y;
}

since f and g may be simultaneously active, x and y will not be overlaid. The advantage

of using overlay locals is that they are statically allocated, which means that, in

general, fewer instructions are required to access them (resulting in a smaller program

memory image). At the same time, the total data memory allocation required for these

variables may be less than what would be required had they been declared as static

due to the fact that some of the variables may be overlaid.
 2002 Microchip Technology Inc. apRNOUU^-page 11

MPLAB® C18 C Compiler User’s Guide
If the MPLINK linker detects a recursive function that contains a local variable of

storage class overlay, it emits an error and aborts. If the MPLINK linker detects a call

through a function pointer in any module and a local variable of storage class overlay

in any (and not necessarily the same) module, it emits an error and aborts.

The default storage class for local variables is auto. This can be overridden explicitly

with the static or overlay keywords or implicitly with either the -scs (static local

variables) or -sco (overlay local variables) command-line option. For completeness,

MPLAB C18 also supports the -sca command-line option. This option allows the

storage class for local variables to be explicitly specified as auto.

2.3.2 static Function Arguments

Function parameters can have storage class auto or static. An auto parameter is

placed on the software stack, enabling reentrancy. A static parameter is allocated

globally, enabling direct access for generally smaller code.

The default storage class for function parameters is auto. This can be overridden

explicitly with the static keyword or implicitly with the -scs command-line option. The

-sco command-line option will also implicitly override function parameters' storage

class with static.

2.4 STORAGE QUALIFIERS

In addition to the ANSI standard storage qualifiers (const, volatile), the MPLAB C18

compiler introduces storage qualifiers of far, near, rom and ram. Syntactically, these

new qualifiers bind to identifiers just as the const and volatile qualifiers do in ANSI

C. Table 2-4 shows the location of an object based on the storage qualifiers specified

when it was defined. The default storage qualifiers for an object defined without explicit

storage qualifiers are far and ram.

TABLE 2-4: LOCATION OF OBJECT BASED ON STORAGE QUALIFIERS

2.4.1 near/far Data Memory Objects

The far qualifier is used to denote that a variable that is located in data memory lives

in a memory bank and that a bank switching instruction is required prior to accessing

this variable. The near qualifier is used to denote that a variable located in data

memory lives in access RAM.

2.4.2 near/far Program Memory Objects

The far qualifier is used to denote that a variable that is located in program memory

can be found anywhere in program memory, or, if a pointer, that it can access up to and

beyond 64K of program memory space. The near qualifier is used to denote that a

variable located in program memory is found at an address less than 64K, or, if a

pointer, that it can access only up to 64K of program memory space.

rom ram

far Anywhere in program memory Anywhere in data memory (default)

near In program memory with address less

than 64K

In access memory
apRNOUU^-page 12  2002 Microchip Technology Inc.

Language Specifics
2.4.3 ram/rom Qualifiers

Because the PICmicro microcontrollers use separate program memory and data

memory address busses in their design, MPLAB C18 requires extensions to distinguish

between data located in program memory and data located in data memory. The

ANSI/ISO C standard allows for code and data to be in separate address spaces, but

this is not sufficient to locate data in the code space as well. To this purpose, MPLAB

C18 introduces the rom and ram qualifiers. The rom qualifier denotes that the object is

located in program memory, whereas the ram qualifier denotes that the object is located

in data memory.

Pointers can point to either data memory (ram pointers) or program memory (rom

pointers). Pointers are assumed to be ram pointers unless declared as rom. The size of

a pointer is dependent on the type of the pointer and is documented in Table 2-5.

TABLE 2-5: POINTER SIZES

2.5 INCLUDE FILE SEARCH PATHS

2.5.1 System Header Files

Source files included with #include <filename> are searched for in the path specified

in the MCC_INCLUDE environment variable and the directories specified via the -I

command-line option. Both the MCC_INCLUDE environment variable and the -I values

are a semi-colon delimited list of directories to search. If the included file exists in both

a directory listed in the MCC_INCLUDE environmental variable and a directory listed in a

-I command-line option, the file will be included from the directory listed in the -I

command-line option. This allows the MCC_INCLUDE environmental variable to be

overridden with a -I command-line option.

2.5.2 User Header Files

Source files included with #include “filename” are searched for in the directory

containing the including file. If not found, the file is searched for as a system header file

(see 2.5.1 “System Header Files”).

Note: When writing to a rom variable, the compiler uses a TBLWT instruction;

however, there may be additional application code that needs to be

written based on the type of memory being utilized. See the data sheet

for more information.

Pointer Type Example Size

Data memory pointer char * dmp; 16 bits

Near program memory pointer rom near * npmp; 16 bits

Far program memory pointer rom far * fpmp; 24 bits
 2002 Microchip Technology Inc. apRNOUU^-page 13

MPLAB® C18 C Compiler User’s Guide
2.6 PREDEFINED MACRO NAMES

In addition to the standard predefined macro names, MPLAB C18 provides the

following predefined macros:

__18CXX The constant 1, intended to indicate the MPLAB C18 compiler.

__PROCESSOR The constant 1 if compiled for the particular processor. For example,

__18C452 would be defined as the constant 1 if compiled with the -p18c452

command-line option and __18F258 would be defined as the constant 1 if compiled

with the -p18f258 command-line option.

__SMALL__ The constant 1 if compiled with the -ms command-line option.

__LARGE__ The constant 1 if compiled with the -ml command-line option.

2.7 ISO DIVERGENCES

2.7.1 Integer Promotions

ISO mandates that all arithmetic be performed at int precision or greater. By default,

MPLAB C18 will perform arithmetic at the size of the largest operand, even if both

operands are smaller than an int. The ISO mandated behavior can be instated via the

-Oi command-line option.

For example:

unsigned char a, b;
unsigned i;

a = b = 0x80;
i = a + b; /* ISO requires that i == 0x100, but in C18 i == 0 */

Note that this divergence also applies to constant literals. The chosen type for constant

literals is the first one from the appropriate group that can represent the value of the

constant without overflow.

For example:

#define A 0x10 /* A will be considered a char unless -Oi
 specified */
#define B 0x10 /* B will be considered a char unless -Oi
 specified */
#define C (A) * (B)

unsigned i;
i = C; /* ISO requires that i == 0x100, but in C18 i == 0 */

2.7.2 Numeric Constants

MPLAB C18 supports the standard prefixes for specifying hexadecimal (0x) and octal

(0) values and adds support for specifying binary values using the 0b prefix. For

example, the value two hundred thirty seven may be denoted as the binary constant

0b11101101.
apRNOUU^-page 14  2002 Microchip Technology Inc.

Language Specifics
2.7.3 String Constants

The primary use of data located in program memory is for static strings. In keeping

with this, MPLAB C18 automatically places all string constants in program memory.

This type of a string constant is “array of char located in program memory”, (const

rom char []). The .stringtable section is a romdata (see 2.9.1 “#pragma
sectiontype”) section that contains all constant strings. For example the string
“hello” in the following would be located in the .stringtable section:

strcmppgm2ram (Foo, “hello”);

Due to the fact that constant strings are kept in program memory, there are multiple

versions of the standard functions that deal with strings. For example, the strcpy

function has four variants, allowing the copying of a string to and from data and

program memory:

/*
 * Copy string s2 in data memory to string s1 in data memory
 */
char *strcpy (auto char *s1, auto const char *s2);

/*
 * Copy string s2 in program memory to string s1 in data
 * memory
 */
char *strcpypgm2ram (auto char *s1, auto const rom char *s2);

/*
 * Copy string s2 in data memory to string s1 in program
 * memory
 */
rom char *strcpyram2pgm (auto rom char *s1, auto const char *s2);

/*
 * Copy string s2 in program memory to string s1 in program
 * memory
 */
rom char *strcpypgm2pgm (auto rom char *s1,
 auto const rom char *s2);

When using MPLAB C18, a string table in program memory can be declared as:

rom const char table[][20] = { “string 1”, “string 2”,
 “string 3”, “string 4” };
rom const char *rom table2[] = { “string 1”, “string 2”,
 “string 3”, “string 4” };

The declaration of table declares an array of four strings that are each 20 characters

long, and so takes 80 bytes of program memory. table2 is declared as an array of

pointers to program memory. The rom qualifier after the * places the array of pointers

in program memory as well. All of the strings in table2 are 9 bytes long, and the array

is four elements long, so table2 takes (9*4+4*2) = 44 bytes of program memory.

Accesses to table2 may be less efficient than accesses to table, however, because

of the additional level of indirection required by the pointer.
 2002 Microchip Technology Inc. apRNOUU^-page 15

MPLAB® C18 C Compiler User’s Guide
An important consequence of the separate address spaces for MPLAB C18 is that

pointers to data in program memory and pointers to data in data memory are not

compatible. Two pointer types are not compatible unless they point to objects of

compatible types and the objects they point to are located in the same address space.

For example, a pointer to a string in program memory and a pointer to a string in data

memory are not compatible because they refer to different address spaces.

A function to copy a string from program to data memory could be written as follows:

void str2ram(static char *dest, static char rom *src)
{
 while ((*dest++ = *src++) != '\0')
 ;
}

The following code will send a string located in program memory to the USART on a

PIC18C452 using the PICmicro MCU C libraries. The library function to send a string

to the USART, putsUSART(const char *str), takes a pointer to a string as its

argument, but that string must be in data memory.

rom char mystring[] = “Send me to the USART”;

void foo(void)
{
 char strbuffer[21];
 str2ram (strbuffer, mystring);
 putsUSART (strbuffer);
}

Alternatively, the library routine can be modified to read from a string located in program

memory.

/*
 * The only changes required to the library routine are to
 * change the name so the new routine does not conflict with
 * the original routine and to add the rom qualifier to the
 * parameter.
 */
void putsUSART_rom(static const rom char *data)
{
 /* Send characters up to the null */
 do
 {
 while (BusyUSART())
 ;

 /* Write a byte to the USART */
 putcUSART (*data);
 } while (*data++);
}

apRNOUU^-page 16  2002 Microchip Technology Inc.

Language Specifics
2.8 LANGUAGE EXTENSIONS

2.8.1 Anonymous Structures

MPLAB C18 supports anonymous structures inside of unions. An anonymous structure

has the form:

struct { member-list };

An anonymous structure defines an unnamed object. The names of the members of an

anonymous structure must be distinct from other names in the scope in which the

structure is declared. The members are used directly in that scope without the usual

member access syntax.

For example:

union foo
{
 struct
 {
 int a;
 int b;
 };
 char c;
} bar;

...

bar.a = bar.c; /* 'a' is a member of the anonymous structure
 located inside 'bar' */

A structure for which objects or pointers are declared is not an anonymous structure.

For example:

union foo
{
 struct
 {
 int a;
 int b;
 } f, *ptr;
 char c;
} bar;

...

bar.a = bar.c; /* error */
bar.ptr->a = bar.c; /* ok */

The assignment to bar.a is illegal since the member name is not associated with any

particular object.
 2002 Microchip Technology Inc. apRNOUU^-page 17

MPLAB® C18 C Compiler User’s Guide
2.8.2 Inline Assembly

MPLAB C18 provides an internal assembler using a syntax similar to the MPASM

assembler. The block of assembly code must begin with _asm and end with _endasm.

The syntax within the block is:

[label:] [<instruction> [arg1[, arg2[, arg3]]]]

The internal assembler differs from the MPASM assembler as follows:

• No directive support

• Comments must be C or C++ notation

• Full text mnemonics must be used for table reads/writes. i.e.,

- TBLRD

- TBLRDPOSTDEC

- TBLRDPOSTINC

- TBLRDPREINC

- TBLWT

- TBLWTPOSTDEC

- TBLWTPOSTINC

- TBLWTPREINC

• No defaults for instruction operands – all operands must be fully specified

• Default radix is decimal.

• Literals are specified using C radix notation, not MPASM assembler notation. For

example, a hex number should be specified as 0x1234, not H’1234.’

• Label must include colon

For example:

_asm
 /* User assembly code */
 MOVLW 10 // Move decimal 10 to count
 MOVWF count, 0

 /* Loop until count is 0 */
 start:
 DECFSZ count, 1, 0
 GOTO done
 BRA start
 done:
_endasm

It is generally recommended to limit the use of inline assembly to a minimum. Any

functions containing inline assembly will not be optimized by the compiler. To write large

fragments of assembly code, use the MPASM assembler and link the modules to the C

modules using the MPLINK linker.
apRNOUU^-page 18  2002 Microchip Technology Inc.

Language Specifics
2.9 PRAGMAS

2.9.1 #pragma sectiontype

The section declaration pragmas change the current section into which MPLAB C18

will allocate information of the associated type.

A section is a portion of an application located at a specific address of memory.

Sections can contain code or data. A section can be located in either program or data

memory. There are two types of sections for each type of memory.

• program memory

- code – contains executable instructions.

- romdata – contains variables and constants.

• data memory

- udata – contains statically allocated uninitialized user variables.

- idata – contains statically allocated initialized user variables.

Sections are absolute, assigned or unassigned. An absolute section is one that is given

an explicit address via the =address of the section declaration pragma. An assigned

section is one that is ascribed to a specific section via the SECTION directive of the linker

script. An unassigned section is one that is neither absolute nor assigned.

2.9.1.1 SYNTAX

section-directive:

pragma udata [attribute-list] [section-name [=address]]

| # pragma idata [attribute-list] [section-name [=address]]
| # pragma romdata [overlay] [section-name [=address]]
| # pragma code [overlay] [section-name [=address]]

attribute-list:

attribute

| attribute-list attribute

attribute:

access
| overlay

section-name: C identifier

address: integer constant
 2002 Microchip Technology Inc. apRNOUU^-page 19

MPLAB® C18 C Compiler User’s Guide
2.9.1.2 SECTION CONTENTS

A code section contains executable content, located in program memory. A

romdata section contains data allocated into program memory (normally variables

declared with the rom qualifier). For additional information on romdata usage (e.g., for

memory-mapped peripherals) see the MPLINK portion of the MPASM User's Guide

with MPLINK and MPLIB (DS33014). A udata section contains uninitialized global data

statically allocated into data memory. An idata section contains initialized global data

statically allocated into data memory.

Table 2-6 shows which section each of the objects in the following example will be

located in:

rom int ri;
rom char rc = 'A';

int ui;
char uc;

int ii = 0;
char ic = 'A';

void foobar (void)
{
 static rom int foobar_ri;
 static rom char foobar_rc = 'Z';
 ...
}
void foo (void)
{
 static int foo_ui;
 static char foo_uc;
 ...
}

void bar (void)
{
 static int bar_ii = 5;
 static char bar_ic = 'Z';
 ...
}

apRNOUU^-page 20  2002 Microchip Technology Inc.

Language Specifics
TABLE 2-6: OBJECTS’ SECTION LOCATION

2.9.1.3 DEFAULT SECTIONS

A default section exists for each section type in MPLAB C18 (see Table 2-7).

TABLE 2-7: DEFAULT SECTION NAMES

Specifying a section name that has been previously declared causes MPLAB C18 to

resume allocating data of the associated type into the specified section. The section

attributes must match the previous declaration, otherwise an error will occur (see

Appendix D.1 “Errors”).

Object Section Location

ri romdata

rc romdata

foobar_ri romdata

foobar_rc romdata

ui udata

uc udata

foo_ui udata

foo_uc udata

ii idata

ic idata

bar_ii idata

bar_ic idata

foo code

bar code

foobar code

Section Type Default Name

code .code_filename

romdata .romdata_filename

udata .udata_filename

idata .idata_filename

NOTE: filename is the name of the object file being generated. For example,
“mcc18 foo.c -fo=foo.o” will produce an object file with a default code
section named “.code_foo.o”.
 2002 Microchip Technology Inc. apRNOUU^-page 21

MPLAB® C18 C Compiler User’s Guide
A section pragma directive with no name resets the allocation of data of the associated

type to the default section for the current module. For example:

/*
 * The following statement changes the current code
 * section to the absolute section high_vector
 */
#pragma code high_vector=0x08
...

/*
 * The following statement returns to the default code
 * section
 */
#pragma code
...

When the MPLAB C18 compiler begins compiling a source file, it has default data

sections for both initialized and uninitialized data. These default sections are located in

either access or non-access RAM depending on whether the compiler was invoked

with a -Oa+ option or not, respectively. When a #pragma udata [access] name

directive is encountered in the source code, the current uninitialized data section

becomes name, which is located in access or non-access RAM depending on whether

the optional access attribute was specified. The same is true for the current initialized

data section when a #pragma idata [access] name directive is encountered.

Objects are placed in the current initialized data section when an object definition with

an explicit initializer is encountered. Objects without an explicit initializer in their

definition are placed in the current uninitialized data section. For example, in the

following code snippet, i would be located in the current initialized data section and

u would be placed in the current uninitialized data section.

int i = 5;
int u;

void main(void)
{
 ...
}

If an object's definition has an explicit far qualifier (see 2.4 “Storage Qualifiers”), the

object is located in non-access memory. Similarly, an explicit near qualifier (see

2.4 “Storage Qualifiers”) tells the compiler that the object is located in access memory.

If an object's definition has neither the near or far qualifier, the compiler looks at

whether the -Oa+ option was specified on the command line.
apRNOUU^-page 22  2002 Microchip Technology Inc.

Language Specifics
2.9.1.4 SECTION ATTRIBUTES

The #pragma sectiontype directive may optionally include two section attributes –

access or overlay.

2.9.1.4.1 access

The access attribute tells the compiler to locate the specified section in an access

region of data memory (see the device data sheets or the PICmicro 18C MCU Family

Reference Manual (DS39500) for more on access data memory).

Data sections with the access attribute will be placed into memory regions that are

defined as ACCESSBANK in the linker script file. These regions are those accessed via

the access bit of an instruction, i.e., no banking is required (see the device data sheet).

Variables located in an access section must be declared with the near keyword. For

example:

#pragma udata access my_access
/* all accesses to these will be unbanked */
near unsigned char av1, av2;

2.9.1.4.2 overlay

The overlay attribute permits other sections to be located at the same physical

address. This can conserve memory by locating variables to the same location (as long

as both are not active at the same time.) The overlay attribute can be used in

conjunction with the access attribute.

Code sections that have the overlay attribute can be located at an address that

overlaps other overlay code sections. For example:

#pragma code overlay my_overlay_scn_1=0x1000
...

#pragma code overlay my_overlay_scn_2=0x1000
...

Data sections that have the overlay attribute can be located at an address that

overlaps other overlay data sections. This feature can be useful for allowing a single

data range to be used for multiple variables that are never active simultaneously. For

example:

#pragma udata overlay my_overlay_data1=0x1fc
/* 4 bytes will be located at 0x1fc and 0x1fe */
int int_var1, int_var2;

#pragma udata overlay my_overlay_data2=0x1fc
/* 4 bytes will be located at 0x1fc */
long long_var;

For more information on the handling of overlay sections see MPASM User's Guide

with MPLINK and MPLIB (DS33014).
 2002 Microchip Technology Inc. apRNOUU^-page 23

MPLAB® C18 C Compiler User’s Guide
2.9.1.5 LOCATING CODE

Following a #pragma code directive, all generated code will be assigned to the

specified code section until another #pragma code directive is encountered. An

absolute code section allows the location of code to a specific address. For example:

#pragma code my_code=0x2000

will locate the code section my_code at program memory address 0x2000.

The linker will enforce that code sections be placed in program memory regions;

however, a code section can be located in a specified memory region. The SECTION

directive of the linker script is used to assign a section to a specific memory region.

The following linker script directive assigns code section my_code1 to memory region

page1:

SECTION NAME=my_code1 ROM=page1

2.9.1.6 LOCATING DATA

Data can be placed in either data or program memory with the MPLAB C18 compiler.

Data that is placed in on-chip program memory can be read but not written without

additional user-supplied code. Data placed in external program memory can generally

be either read or written without additional user-supplied code.

For example, the following declares a section for statically allocated uninitialized data

(udata) at absolute address 0x120:

#pragma udata my_new_data_section=0x120

The rom keyword tells the compiler that a variable should be placed in program

memory. The compiler will allocate this variable into the current romdata type section.

For example:

#pragma romdata const_table
const rom char my_const_array[10] = {0, 1, 2, 3, 4, 5,
 6, 7, 8, 9};

/* Resume allocation of romdata into the default section */
#pragma romdata

The linker will enforce that romdata sections be placed in program memory regions and

that udata and idata sections be placed in data memory regions; however, a data

section can also be located in a specified memory region. The SECTION directive of the

linker script is used to assign a section to a specific memory region. The following

assigns udata section my_data to memory region gpr1:

SECTION NAME=my_data RAM=gpr1
apRNOUU^-page 24  2002 Microchip Technology Inc.

Language Specifics
2.9.2 #pragma interruptlow fname
#pragma interrupt fname

The interrupt pragma declares a function to be a high-priority interrupt service

routine (ISR); the interruptlow pragma declares a function to be a low-priority

interrupt service routine.

An interrupt suspends the execution of a running application, saves the current context

information and transfers control to an ISR so that the event may be processed. Upon

completion of the ISR, previous context information is restored and normal execution

of the application resumes. The minimal context saved and restored for an interrupt is

WREG, BSR and STATUS. A high-priority interrupt uses the shadow registers to save and

restore the minimal context, while a low-priority interrupt uses the software stack to

save and restore the minimal context. As a consequence, a high-priority interrupt

terminates with a fast “return from interrupt”, while a low-priority interrupt terminates

with a normal “return from interrupt”. Two MOVFF instructions are required for each byte

of context preserved via the software stack except for WREG, which requires a MOVWF

instruction and a MOVF instruction; therefore, in order to preserve the minimal context,

a low-priority interrupt has an additional 10-word overhead beyond the requirements of

a high-priority interrupt.

Interrupt service routines use a temporary data section that is distinct from that used

by normal C functions. Any temporary data required during the evaluation of

expressions in the interrupt service routine is allocated in this section and is not

overlaid with the temporary locations of other functions, including other interrupt

functions. The interrupt pragmas allow the interrupt temporary data section to be

named. If this section is not named, the compiler temporary variables are created in

an access qualified udata section named fname_tmp. For example:

void foo(void);
...
#pragma interrupt foo
void foo(void)
{
 /* perform interrupt function here */
}

The compiler temporary variables for interrupt service routine foo will be placed in the

access qualified udata section foo_tmp.
 2002 Microchip Technology Inc. apRNOUU^-page 25

MPLAB® C18 C Compiler User’s Guide
2.9.2.1 SYNTAX

interrupt-directive:

 # pragma interrupt function-name [tmp-section-name][save=save-list]

| # pragma interruptlow function-name [tmp-section-name][save=save-list]

save-list:

save-specifier

| save-list, save-specifier

save-specifier:

symbol-name
| section(“section-name”)

function-name: C identifier -- names the C function serving as an ISR.

tmp-section-name: C identifier -- names section in which to allocate the ISR's

temporary data

symbol-name: C identifier -- name variable that will be restored following interrupt

processing

section-name: C identifier with the exception that the first character can be a dot (.) --
names the section that will be restored following interrupt processing

2.9.2.2 INTERRUPT SERVICE ROUTINES

An MPLAB C18 ISR is like any other C function in that it can have local variables

and access global variables; however, an ISR must be declared with no parameters

and no return value since the ISR, in response to a hardware interrupt, is invoked

asynchronously. Global variables that are accessed by both an ISR and mainline

functions should be declared volatile.

ISR's should only be invoked through a hardware interrupt and not from other C

functions. An ISR uses the return from interrupt (RETFIE) instruction to exit from the

function rather than the normal RETURN instruction. Using a fast RETFIE instruction out

of context can corrupt WREG, BSR and STATUS.
apRNOUU^-page 26  2002 Microchip Technology Inc.

Language Specifics
2.9.2.3 INTERRUPT VECTORS

MPLAB C18 does not automatically place an ISR at the interrupt vector. Commonly, a

GOTO instruction is placed at the interrupt vector for transferring control to the ISR

proper. For example:

#include <p18cxxx.h>

void low_isr(void);
void high_isr(void);

/*
 * For PIC18cxxx devices the low interrupt vector is found at
 * 00000018h. The following code will branch to the
 * low_interrupt_service_routine function to handle
 * interrupts that occur at the low vector.
 */
#pragma code low_vector=0x18
void interrupt_at_low_vector(void)
{
 _asm GOTO low_isr _endasm
}
#pragma code /* return to the default code section */

#pragma interruptlow low_isr
void low_isr (void)
{
 /* ... */
}

/*
 * For PIC18cxxx devices the high interrupt vector is found at
 * 00000008h. The following code will branch to the
 * high_interrupt_service_routine function to handle
 * interrupts that occur at the high vector.
 */
#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
{
 _asm GOTO high_isr _endasm
}
#pragma code /* return to the default code section */

#pragma interrupt high_isr
void high_isr (void)
{
 /* ... */
}

For a complete example, see Chapter 5.
 2002 Microchip Technology Inc. apRNOUU^-page 27

MPLAB® C18 C Compiler User’s Guide
2.9.2.4 ISR CONTEXT SAVING

MPLAB C18 will preserve a basic context by default (see 3.4 “Compiler-Managed

Resources”), and the save= clause allows additional arbitrary symbols to be saved and

restored by the function. If the ISR changes any file registers other than the basic

context, then they should be named in the save= clause. The generated code should

be examined to determine which file registers are used and need to be saved.

#pragma interruptlow low_interrupt_service_routine save=PROD

In addition to file registers, entire data sections can also be named in the save=

clause. For example, to save a user-defined section named mydata, the following

pragma directive would be used:

#pragma interrupt high_interrupt_service_routine save=section("mydata")

If an interrupt service routine calls another function, the normal functions' temporary

data section (which is named .tmpdata) should be saved using a

save=section(".tmpdata") qualifier on the interrupt pragma command. For

example:

#pragma interrupt high_interrupt_service_routine save=section(".tmpdata")

If an interrupt service routine uses math library functions or calls a function that

returns 24- or 32-bit data, the math data section (which is named MATH_DATA) should

be saved using a save=section("MATH_DATA") qualifier on the interrupt pragma

command. For example:

#pragma interrupt high_interrupt_service_routine save=section("MATH_DATA")

2.9.2.5 LATENCY

The time between when an interrupt occurs and when the first ISR instruction is

executed is the latency of the interrupt. The three elements that affect latency are:

1. Processor servicing of interrupt: The amount of time it takes the processor to

recognize the interrupt and branch to the first address of the interrupt vector. To

determine this value refer to the processor data sheet for the specific processor

and interrupt source being used.

2. Interrupt vector execution: The amount of time it takes to execute the code at

the interrupt vector that branches to the ISR.

3. ISR prologue code: The amount of time it takes MPLAB C18 to save the

compiler managed resources and the data in the save= list.

2.9.2.6 NESTING INTERRUPTS

Low-priority interrupts may be nested since active registers are saved onto the software

stack. Only a single instance of a high-priority interrupt service routine may be active at

a time since these ISR's use the single-level hardware shadow registers.

If nesting of low-priority interrupts is desired, a statement to set the GIEL bit can be

added near the beginning of the ISR. See the processor data sheet for details.

Note: If an ISR calls a function that returns a value less than or equal to 32 bits

in size, the locations associated with the return value (see 3.2.1 “Return

Values”) should be specified in the save= list of the interrupt pragma.
apRNOUU^-page 28  2002 Microchip Technology Inc.

Language Specifics
2.9.3 #pragma varlocate bank variable-name
#pragma varlocate section-name variable-name

The varlocate pragma tells the compiler where a variable will be located at link time,

enabling the compiler to perform more efficient bank switching.

The varlocate specifications are not enforced by the compiler or linker. The sections

that contain the variables should be assigned to the correct bank explicitly in the linker

script or via absolute sections in the module(s) where they are defined.

2.9.3.1 SYNTAX

variable-locate-directive :

 # pragma varlocate bank variable-name[, variable-name...]
| # pragma varlocate section-name variable-name[, variable-name...]

bank : integer constant

variable-name : C identifier

section-name : C identifier

2.9.3.2 EXAMPLE

For example, in one file, c1 and c2 are explicitly assigned to bank 1.

#pragma udata bank1=0x100
signed char c1;
signed char c2;

In a second file, the compiler is told that both c1 and c2 are located in bank 1.

#pragma varlocate 1 c1
extern signed char c1;

#pragma varlocate 1 c2
extern signed char c2;

void main (void)
{
 c1 += 5;
 /* No MOVLB instruction needs to be generated here. */
 c2 += 5;
}

When c1 and c2 are used in the second file, the compiler knows that both variables are

in the same bank and does not need to generate a second MOVLB instruction when

using c2 immediately after c1.
 2002 Microchip Technology Inc. apRNOUU^-page 29

MPLAB® C18 C Compiler User’s Guide
2.10 PROCESSOR-SPECIFIC HEADER FILES

The processor-specific header file is a C file that contains external declarations for the

special function registers, which are defined in the register definitions file (see

2.11 “Processor-Specific Register Definitions Files”). For example, in the PIC18C452

processor-specific header file, PORTA is declared as:

extern volatile near unsigned char PORTA;

and as:

extern volatile near union {
 struct {
 unsigned RA0:1;
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned RA6:1;
 } ;
 struct {
 unsigned AN0:1;
 unsigned AN1:1;
 unsigned AN2:1;
 unsigned AN3:1;
 unsigned T0CKI:1;
 unsigned SS:1;
 unsigned OSC2:1;
 } ;
 struct {
 unsigned :2;
 unsigned VREFM:1;
 unsigned VREFP:1;
 unsigned :1;
 unsigned AN4:1;
 unsigned CLKOUT:1;
 } ;
 struct {
 unsigned :5;
 unsigned LVDIN:1;
 } ;
} PORTAbits ;

The first declaration specifies that PORTA is a byte (unsigned char). The extern

modifier is needed since the variables are declared in the register definitions file. The

volatile modifier tells the compiler that it cannot assume that PORTA retains values

assigned to it. The near modifier specifies that the port is located in access RAM.

The second declaration specifies that PORTAbits is a union of bit-addressable

anonymous structures (see 2.8.1 “Anonymous Structures”). Since individual bits in a

special function register may have more than one function (and hence more than one

name), there are multiple structure definitions inside the union all referring to the same

register. Respective bits in all structure definitions refer to the same bit in the register.

Where a bit has only one function for its position, it is simply padded in other structure

definitions. For example, bits 1 and 2 on PORTA are simply padded in the third and

fourth structures because they only have two names, whereas, bit 6 has four names

and is specified in each of the structures.
apRNOUU^-page 30  2002 Microchip Technology Inc.

Language Specifics
Any of the following statements can be written to use the PORTA special function

register:

PORTA = 0x34; /* Assigns the value 0x34 to the port */
PORTAbits.AN0 = 1; /* Sets the AN0 pin high */
PORTAbits.RA0 = 1; /* Sets the RA0 pin high, same as above
 statement */

In addition to register declarations, the processor-specific header file defines inline

assembly macros. These macros represent certain PICmicro MCU instructions that an

application may need to execute from C code. Although, these instructions could be

included as inline assembly instructions, as a convenience they are provided as C

macros (see Table 2-8).

In order to use the processor-specific header file, choose the header file that pertains

to the device being used (e.g., if using a PIC18C452, #include <p18c452.h> in the

application source code). The processor-specific header files are located in the

c:\mcc18\h directory, where c:\mcc18 is the directory where the compiler is installed.

Alternatively, #include <p18cxxx.h> will include the proper processor-specific

header file based on the processor selected on the command line via the -p

command-line option.

TABLE 2-8: C MACROS PROVIDED FOR PICmicro MCU INSTRUCTIONS

Instruction Macro1 Action

Nop() Executes a no operation (NOP)

ClrWdt() Clears the watchdog timer (CLRWDT)

Sleep() Executes a SLEEP instruction

Reset() Executes a device reset (RESET)

Rlcf(var, dest, access)2,3 Rotates var to the left through the carry bit.

Rlncf(var, dest, access)2,3 Rotates var to the left without going through the
carry bit

Rrcf(var, dest, access)2,3 Rotates var to the right through the carry bit

Rrncf(var, dest, access)2,3 Rotates var to the right without going through the
carry bit

Swapf(var, dest, access)2,3 Swaps the upper and lower nibble of var

Note 1: Using any of these macros in a function affects the ability of the MPLAB C18

compiler to perform optimizations on that function.

2: var must be an 8-bit quantity (i.e., char) and not located on the stack.

3: If dest is 0, the result is stored in WREG, and if dest is 1, the result is stored in var.
If access is 0, the access bank will be selected, overriding the BSR value. If access
is 1, then the bank will be selected as per the BSR value.
 2002 Microchip Technology Inc. apRNOUU^-page 31

MPLAB® C18 C Compiler User’s Guide
2.11 PROCESSOR-SPECIFIC REGISTER DEFINITIONS FILES

The processor-specific register definitions file is an assembly file that contains

definitions for all the special function registers on a given device. The processor-

specific register definitions file, when compiled, will become an object file that will need

to be linked with the application (e.g., p18c452.asm compiles to p18c452.o). This

object file is contained in p18xxxx.lib (e.g., p18c452.o is contained in p18c452.lib).

The source code for the processor-specific register definitions files is found in the

c:\mcc18\src\proc directory and compiled object code is found in the c:\mcc18\lib

directory, where c:\mcc18 is the directory where the compiler is installed.

For example, PORTA is defined in the PIC18C452 processor-specific register

definitions file as:

SFR_UNBANKED0 UDATA_ACS H'f80'
PORTA
PORTAbits RES 1 ; 0xf80

The first line specifies the file register bank where PORTA is located and the starting

address for that bank. PORTA has two labels, PORTAbits and PORTA, both referring to

the same location (in this case 0xf80).

2.12 CONFIGURATION WORDS

The default linker script for each part contains a section named CONFIG. For example,

the p18c452.lkr script contains the following statements:

CODEPAGE NAME=config START=0x300000 END=0x300007 PROTECTED
...
SECTION NAME=CONFIG ROM=config

The #pragma romdata CONFIG directive is used to set the current romdata section to

the section named CONFIG. Each configuration word can be set up (in order) using

initialized rom unsigned integers. For example:

#pragma romdata CONFIG
rom const unsigned int config_word1 = 0x0023;
rom const unsigned int config_word2 = 0x0004;

will set the bits in the first two configuration words.
apRNOUU^-page 32  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Chapter 3. Runtime Model
This section discusses the runtime model or the set of assumptions that the MPLAB

C18 compiler operates, including information about how the MPLAB C18 compiler uses

the resources of the PIC18 PICmicro microcontrollers.

3.1 MEMORY MODELS

MPLAB C18 provides full library support for both a small and a large memory model

(see Table 3-1). The small memory model is selected using the -ms command-line

option and the large memory model using the -ml option. If neither is provided, the

small memory model is used by default.

TABLE 3-1: MEMORY MODEL SUMMARY

The difference between the small and large models is the size of pointers that point to

program memory. In the small memory model, both function and data pointers that

point to program memory use 16 bits. This has the effect of restricting pointers to

addressing only the first 64k of program memory in the small model. In the large

memory model, 24 bits are used. Applications using more than 64k of program memory

must use the large memory model.

The memory model setting can be overridden on a case-by-case basis by using the

near or far qualifier when declaring a pointer into program space. Pointers to near

memory use 16 bits as in the small memory model, and pointers to far memory use 24

bits as in the large memory model.

The following example creates a pointer to program memory that can address up to

and beyond 64k of program memory space, even when the small memory model is

being used1:

far rom *pgm_ptr;

The following example creates a function pointer that can address up to and beyond

64k of program memory space, even when the small memory model is being used2:

far rom void (*fp) (void);

If the same memory model is not used for all files in a project, all global pointers to

program memory should be declared with explicit near or far qualifiers so that they are

accessed correctly in all modules. The pre-compiled libraries distributed with MPLAB

C18 can be used with either the small or large memory models.

Memory Model
Command-line

Switch

Default ROM

Range Qualifier

Size of Pointers to

Program Space

small -ms near 16 bits

large -ml far 24 bits

1. Following the use of a far data pointer in a small memory model program, the TBLPTRU byte must be
cleared by the user. MPLAB C18 does not clear this byte.

2. Following the use of a far function pointer in a small memory model program, the PCLATU byte must
be cleared by the user. MPLAB C18 does not clear this byte.
 2002 Microchip Technology Inc. apRNOUU^-page 33

MPLAB® C18 C Compiler User’s Guide
3.2 CALLING CONVENTIONS

The MPLAB C18 software stack is an upward growing stack data structure on which

the compiler places function arguments and local variables that have the storage class

auto. The software stack is distinct from the hardware stack upon which the PICmicro

microcontroller places function call return addresses. Figure 3-1 shows an example of

the software stack.

FIGURE 3-1: EXAMPLE OF SOFTWARE STACK

The stack pointer (FSR1) always points to the next available stack location. MPLAB C18

uses FSR2 as the frame pointer, providing quick access to local variables and

parameters. When a function is invoked, its stack-based arguments are pushed onto

the stack in right-to-left order and the function is called. The leftmost function argument

is on the top of the software stack upon entry into the function.

Figure 3-2 shows the software stack immediately prior to a function call.

FIGURE 3-2: EXAMPLE OF SOFTWARE STACK IMMEDIATELY PRIOR TO

FUNCTION CALL

The frame pointer references the location on the stack that separates the stack-based

arguments from the stack-based local variables. Stack-based arguments are located at

negative offsets from the frame pointer, and stack based local variables are located at

positive offsets from the frame pointer. Immediately upon entry into a C function, the

called function pushes the value of FSR2 onto the stack and copies the value of FSR1

into FSR2, thereby saving the context of the calling function and initializing the frame

pointer of the current function. Then the total size of stack-based local variables for the

function is added to the stack pointer, allocating stack space for those variables.

References to stack-based local variables and stack-based arguments are resolved

according to offsets from the frame pointer. Figure 3-3 shows a software stack following

a call to a C function.

unused location

function context

(local variables and

parameters)

FSR1 (stack pointer)

FSR2 (frame pointer)

Increasing

addresses

unused location

function parameter 1

FSR1 (stack pointer)

FSR2 (frame pointer)In
c
re
a
s
in
g
 a
d
d
re
s
s
e
s

function parameter 2

...

function parameter n

function context
apRNOUU^-page 34  2002 Microchip Technology Inc.

Runtime Model
FIGURE 3-3: EXAMPLE OF SOFTWARE STACK FOLLOWING A

C FUNCTION CALL

3.2.1 Return Values

The location of the return value is dependent on the size of the return value. Table 3-2

details the location of the return value based on its size.

TABLE 3-2: RETURN VALUES

Return Value Size Return Value Location

8 bits WREG

16 bits PRODH:PRODL

24 bits (AARGB2+2):(AARGB2+1):AARGB2

32 bits (AARGB3+3):(AARGB3+2):(AARGB3+1):AARGB3

> 32 bits on the stack, and FSR0 points to the return value

local variable n

FSR1 (stack pointer)

FSR2 (frame pointer)
In
c
re
a
s
in
g
 a
d
d
re
s
s
e
s

...

local variable 2

local variable 1

caller function’s context

called function parameter n

previous frame pointer

called function parameter 1

called function parameter 2

...

unused location
 2002 Microchip Technology Inc. apRNOUU^-page 35

MPLAB® C18 C Compiler User’s Guide
3.2.2 Managing the Software Stack

The stack is sized and placed via the linker script with the STACK directive. The STACK

directive has two arguments: SIZE and RAM to control the allocated stack size and its

location, respectively. For example, to allocate a 128 byte stack and place that stack in

the memory region gpr3:

STACK SIZE=0x80 RAM=gpr3

MPLAB C18 supports stack sizes greater than 256 bytes. The default linker scripts

allocate one memory region per bank of memory, so to allocate a stack larger than 256

bytes requires combining two or more memory regions, as the stack section cannot

cross memory region boundaries. For example, the default linker script for the

PIC18C452 contains the definitions:

DATABANK NAME=gpr4 START=0x400 END=0x4ff
DATABANK NAME=gpr5 START=0x500 END=0x5ff
...
STACK SIZE=0x100 RAM=gpr5

To allocate a 512 byte stack in banks 4 and 5, these definitions should be replaced with:

DATABANK NAME=stackregion START=0x400 END=0x5ff PROTECTED
STACK SIZE=0x200 RAM=stackregion

If a stack larger than 256 bytes is used, the -ls option must be given to the compiler.

There is a slight performance penalty that is incurred when using a large stack, as both

bytes of the frame pointer (FSR2L and FSR2H) must be incremented/decremented when

doing a push/pop, rather than just the low-byte.

The size of the software stack required by an application varies with the complexity of

the program. When nesting function calls, all auto parameters and variables of the call-

ing function will remain on the stack. Therefore, the stack must be large enough to

accommodate the requirements by all functions in a tree.

MPLAB C18 supports parameters and local variables allocated either on the software

stack or directly from global memory. The static keyword places a local variable or a

function parameter in global memory instead of on the software stack. In general,

stack-based local variables and function parameters require more code to access than

static local variables and function parameters (see 2.3.2 “static Function

Arguments”). Functions that use stack-based variables are more flexible in that they

can be reentrant and/or recursive.

3.2.3 Mixing C and Assembly

3.2.3.1 CALLING C FUNCTIONS FROM ASSEMBLY

When calling C functions from assembly:

• C functions are inherently global, unless defined as static.

• The C function name must be declared as an extern symbol in the assembly file.

• A CALL or an RCALL must be used to make the function call.
apRNOUU^-page 36  2002 Microchip Technology Inc.

Runtime Model
3.2.3.1.1 auto Parameters

auto parameters are pushed onto the software stack from right to left. For multi-byte

data, the low byte is pushed onto the software stack first.

EXAMPLE 3-1:

Given the following prototype for a C function:

char add (auto char x, auto char y);

to call the function add with values x = 0x61 and y = 0x65, the value for y must be
pushed onto the software stack followed by the value of x. The return value, since it is

8 bits, will be returned in WREG (see Table 3-2), i.e.,

 EXTERN add ; defined in C module
...
MOVLW 0x65
MOVWF POSTINC1 ; y = 0x65 pushed onto stack
MOVLW 0x61
MOVWF POSTINC1 ; x = 0x61 pushed onto stack
CALL add
MOVWF result ; result is returned in WREG
...

EXAMPLE 3-2:

Given the following prototype for a C function:

int sub (auto int x, auto int y);

to call the function sub with values x = 0x7861 and y = 0x1265, the value for y must
be pushed onto the software stack followed by the value of x. The return value, since

it is 16 bits, will be returned in PRODH:PRODL (see Table 3-2), i.e.,

 EXTERN sub ; defined in C module
...
MOVLW 0x65
MOVWF POSTINC1
MOVLW 0x12
MOVWF POSTINC1 ; y = 0x1265 pushed onto stack
MOVLW 0x61
MOVWF POSTINC1
MOVLW 0x78
MOVWF POSTINC1 ; x = 0x7861 pushed onto stack
CALL sub
MOVFF PRODL, result
MOVFF PRODH, result+1 ; result is returned in PRODH:PRODL
...
 2002 Microchip Technology Inc. apRNOUU^-page 37

MPLAB® C18 C Compiler User’s Guide
3.2.3.1.2 static Parameters

static parameters are allocated globally, enabling direct access. The naming

convention for static parameters is __function_name:n, where function_name

is replaced by the name of the function and n is the parameter position, with numbering
starting from 0. For example, given the following prototype for a C function:

char add (static char x, static char y);

the value for y is accessed by using __add:1, and the value of x is accessed by using

__add:0.

3.2.3.2 CALLING ASSEMBLY FUNCTIONS FROM C

When calling assembly functions from C:

• The function label must be declared as global in the ASM module.

• The function must be declared as extern in the C module.

• The function must maintain the MPLAB C18 compiler's runtime model (e.g., return

values must be returned in the locations specified in Table 3-2).

• The function is called from C using standard C function notation.

EXAMPLE 3-3:

Given the following function written in assembly:

 UDATA_ACS
delay_temp RES 1

 CODE
asm_delay
 SETF delay_temp
not_done
 DECF delay_temp
 BNZ not_done
done
 RETURN

 GLOBAL asm_delay ; export so linker can see it
 END

to call the function asm_delay from a C source file, an external prototype for the

assembly function must be added, and the function called using standard C function

notation:

/* asm_delay is found in an assembly file */
extern void asm_delay (void);

void main (void)
{

asm_delay ();
}

Note: Since ':' is not a valid character in the MPASM assembler’s labels,

accessing static parameters in assembly functions is not supported.
apRNOUU^-page 38  2002 Microchip Technology Inc.

Runtime Model
EXAMPLE 3-4:

Given the following function written in assembly,

 INCLUDE “p18c452.inc”

 CODE
asm_timed_delay
not_done
 ; Figure 3-2 is what the stack looks like upon
 ; entry to this function.
 ;
 ; ‘time’ is passed on the stack and must be >= 0
 MOVLW 0xff
 DECF PLUSW1, 0x1, 0x0
 BNZ not_done
done
 RETURN
 ; export so linker can see it
 GLOBAL asm_timed_delay
 END

to call the function asm_timed_delay from a C source file, an external prototype for the

assembly function must be added, and the function called using standard C function

notation:

/* asm_timed_delay is found in an assembly file */
extern void asm_timed_delay (unsigned char);

void main (void)
{
 asm_timed_delay (0x80);
}

3.2.3.3 USING C VARIABLES IN ASSEMBLY

When using C variables in assembly:

• The C variable must have global scope in the C source file.

• The C variable must be declared as an extern symbol in the assembly file.
 2002 Microchip Technology Inc. apRNOUU^-page 39

MPLAB® C18 C Compiler User’s Guide
EXAMPLE 3-5:

Given the following written in C:

unsigned int c_variable;

void main (void)
{
 ...
}

to modify the variable c_variable from assembly, an external declaration must be

added for the variable in the assembly source file:

 EXTERN c_variable ; defined in C module
MYCODE CODE
asm_function
 MOVLW 0xff
 ; put 0xffff in the C declared variable
 MOVWF c_variable
 MOVWF c_variable+1
done
 RETURN

 ; export so linker can see it
 GLOBAL asm_function
 END

3.2.3.4 USING ASSEMBLY VARIABLES IN C

When using assembly variables in C:

• The variable must be declared as global in the ASM module.

• The variable must be declared as extern in the C module.

EXAMPLE 3-6:

Given the following written in assembly,

MYDATA UDATA
asm_variable RES 2 ; 2 byte variable

 ; export so linker can see it
 GLOBAL asm_variable
 END

to change the variable asm_variable from a C source file, an external declaration must

be added for the variable in the C source file. The variable can be used as if it were a

C variable:

extern unsigned int asm_variable;

void change_asm_variable (void)
{

asm_variable = 0x1234;
}

apRNOUU^-page 40  2002 Microchip Technology Inc.

Runtime Model
3.3 STARTUP CODE

3.3.1 Default Behavior

The MPLAB C18 startup begins at the reset vector (address 0). The reset vector

jumps to a function that initializes FSR1 and FSR2 to reference the software stack,

optionally calls a function to initialize idata sections (data memory initialized data) from

program memory, and loops on a call to the application's main() function.

Whether the startup code initializes idata sections is determined by which startup

code module is linked with the application. The c018i.o module performs the

initialization, while the c018.o module does not. The default linker scripts provided by

MPLAB C18 link with c018i.o.

The ANSI standard requires that all objects with static storage duration that are not

initialized explicitly are set to zero. With both the c018.o and c018i.o startup code

modules, this requirement is not met. A third startup module, c018iz.o, is provided to

meet this requirement. If this startup code module is linked with the application, then,

in addition to initializing idata sections, all objects with static storage duration that are

not initialized explicitly are set to zero.

To perform initialization of data memory, the MPLINK linker creates a copy of initialized

data memory in program memory that the startup copies to data memory. The .cinit

section is populated by the MPLINK linker to describe where the program memory

images should be copied to. Table 3-3 describes the format of the .cinit section.

TABLE 3-3: FORMAT OF .cinit

After the startup code sets up the stack and optionally copies initialized data, it calls the

main() function of the C program. There are no arguments passed to main(). MPLAB

C18 transfers control to main() via a looped call, i.e.:

loop:
 // Call the user's main routine
 main();
goto loop;

Field Description Size

num_init Number of sections 16 bit

from_addr_0 Program memory start address of section 0 32 bit

to_addr_0 Data memory start address of section 0 32 bit

size_0 Number of data memory bytes to initialize for section 0 32 bit

...

from_addr_n1 Program memory start address of section n1 32 bit

to_addr_n1 Data memory start address of section n1 32 bit

size_n1 Number of data memory bytes to initialize for section n1 32 bit

Note 1: n = num_init - 1
 2002 Microchip Technology Inc. apRNOUU^-page 41

MPLAB® C18 C Compiler User’s Guide
3.3.2 Customization

To execute application-specific code immediately after a device reset but before any

other code generated by the compiler is executed, edit the desired startup file and add

the code to the beginning of the _entry() function.

To customize the startup files:

1. Go to the c:\mcc18\src\startup directory, where c:\mcc18 is the directory

where the compiler is installed.

2. Edit either c018.c, c018i.c or c018iz.c to add any customized startup code

desired.

3. Compile the updated startup file to generate either c018.o, c018i.o or c018iz.o.

3.4 COMPILER-MANAGED RESOURCES

Certain special function registers and data sections of the PIC18 PICmicro

microcontrollers are used by MPLAB C18 and are not available for general purpose

user code. Table 3-4 indicates each of these resources, their primary use by the

compiler, and whether the compiler automatically saves the resource when entering an

ISR.

TABLE 3-4: COMPILER RESERVED RESOURCES

Compiler-Managed

Resource
Primary Use(s)

Automatically

Saved

PC execution control �

WREG intermediate calculations �

STATUS calculation results �

BSR bank selection �

PROD multiplication results, return values,

intermediate calculations

section.tmpdata intermediate calculations

FSR0 pointers to RAM �

FSR1 stack pointer �

FSR2 frame pointer �

TBLPTR accessing values in program memory

TABLAT accessing values in program memory

section MATH_DATA arguments, return values and temporary

locations for math library functions

Note: Compiler temporary variables are placed in an access qualified udata section
named .tmpdata. Interrupt service routines each create a separate section for
temporary data storage (see 2.9.2 “#pragma interruptlow fname #pragma
interrupt fname”).
apRNOUU^-page 42  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Chapter 4. Optimizations
The MPLAB C18 compiler is an optimizing compiler. It performs optimizations that are

primarily intended to reduce code size. All of the optimizations that can be performed

by the MPLAB C18 compiler are enabled by default, but can be completely disabled

using the -O- command-line option. The MPLAB C18 compiler also allows

optimizations to be enable or disable on a case-by-case basis. Table 4-1 outlines each

of the optimizations that can be performed by the MPLAB C18 compiler, including the

command-line option to enable or disable it, whether or not it affects debugging, and

the section where it is discussed.

TABLE 4-1: MPLAB C18 OPTIMIZATIONS

4.1 DUPLICATE STRING MERGING -Om+ / -Om-

Duplicate string merging, when enabled, will take two or more identical literal strings

and combine them into a single string table entry with a single instance of the raw data

stored in program memory. For example, given the following, when duplicate string

merging is enabled (-Om+), only a single instance of the data for the string “foo” would

be stored in the output object file, and both a and b would reference this data.

const rom char * a = “foo”;
const rom char * b = “foo”;

The -Om- command-line option disables duplicate string merging.

Duplicate string merging should not affect the ability to debug source code.

Note: Optimizations will not occur on any function containing inline assembly

code.

Optimization To Enable To Disable
Affects

Debugging
Section

Duplicate String Merging -Om+ -Om- 4.1

Branches -Ob+ -Ob- 4.2

Banking -On+ -On- 4.3

WREG Content Tracking -Ow+ -Ow- 4.4

Code Straightening -Os+ -Os- 4.5

Tail Merging -Ot+ -Ot- � 4.6

Unreachable Code Removal -Ou+ -Ou- � 4.7

Copy Propagation -Op+ -Op- � 4.8

Redundant Store Removal -Or+ -Or- � 4.9

Dead Code Removal -Od+ -Od- � 4.10

Procedural Abstraction -Opa+ -Opa- � 4.11
 2002 Microchip Technology Inc. apRNOUU^-page 43

MPLAB® C18 C Compiler User’s Guide
4.2 BRANCHES -Ob+ / -Ob-

The following branch optimizations are performed by the MPLAB C18 compiler when

the -Ob+ command-line option is specified:

1. A branch (conditional or unconditional) to an unconditional branch can be

modified to target the latter's target instead.

2. An unconditional branch to a RETURN instruction can be replaced by a RETURN
instruction.

3. A branch (conditional or unconditional) to the instruction immediately following

the branch can be removed.

4. A conditional branch to a conditional branch can be modified to target the latter's

target if both branches branch on the same condition.

5. A conditional branch immediately followed by an unconditional branch to the

same destination can be removed (i.e., the unconditional branch is sufficient).

The -Ob- command-line option disables branch optimizations.

Some of the branch optimizations save program space, while others may expose

unreachable code, which can be removed by Unreachable Code Removal (see

4.7 “Unreachable Code Removal”). Branch optimization should not affect the ability to

debug source code.

4.3 BANKING -On+ / -On-

Banking optimization removes MOVLB instruction in instances where it can be

determined that the bank select register already contains the correct value. For

example, given the following C source code fragment:

unsigned char a, b;
a = 5;
b = 5;

If compiled with banking optimization disabled (-On-), MPLAB C18 will load the bank

register prior to each assignment:

0x000000 MOVLB a
0x000002 MOVLW 0x5
0x000004 MOVWF a,0x1
0x000006 MOVLB b
0x000008 MOVWF b,0x1

When this same code is compiled with banking optimization enabled (-On+), MPLAB

C18 may be able to eliminate the second MOVLB instruction by determining that the

value of the bank register will not change:

0x000000 MOVLB a
0x000002 MOVLW 0x5
0x000004 MOVWF a,0x1
0x000006 MOVWF b,0x1

The banking optimization should not affect the ability to debug source code.
apRNOUU^-page 44  2002 Microchip Technology Inc.

Optimizations
4.4 WREG CONTENT TRACKING -Ow+ / -Ow-

WREG content tracking removes MOVLW instructions in instances where it can be

determined that the working register already contains the correct value. For example,

given the following C source code fragment:

unsigned char a, b;
a = 5;
b = 5;

If compiled with WREG content tracking disabled (-Ow-), MPLAB C18 will load a value

of 5 into the working register prior to each assignment:

0x000000 MOVLW 0x5
0x000002 MOVWF a,0x1
0x000004 MOVLW 0x5
0x000006 MOVWF b,0x1

When this same code is compiled with WREG tracking enabled (-Ow+), MPLAB C18

may be able to eliminate the second MOVLW instruction by determining that the value of

WREG must already be 5 at this point:

0x000000 MOVLW 0x5
0x000002 MOVWF a,0x1
0x000004 MOVWF b,0x1

WREG content tracking should not affect the ability to debug source code.

4.5 CODE STRAIGHTENING -Os+ / -Os-

Code straightening attempts to reorder code sequences so that they appear in the

order in which they will be executed. This can move or remove branching instructions

so that code may be smaller and more efficient. An example where this may occur in

C is:

first:
 sub1();
 goto second;
third:
 sub3();
 goto fourth;
second:
 sub2();
 goto third;
fourth:
 sub4();

In this example, the function calls will occur in numerical order, namely: sub1, sub2,

sub3 and then sub4. With code straightening disabled (-Os-), the original flow of the

code is mirrored in the generated assembly code:

0x000000 first CALL sub1,0x0
0x000002
0x000004 BRA second
0x000006 third CALL sub3,0x0
0x000008
0x00000a BRA fourth
0x00000c second CALL sub2,0x0
0x00000e
0x000010 BRA third
0x000012 fourth CALL sub4,0x0
0x000014
 2002 Microchip Technology Inc. apRNOUU^-page 45

MPLAB® C18 C Compiler User’s Guide
With code straightening enabled (-Os+), the code is reordered sequentially, removing

the branching instructions:

0x000000 first CALL sub1,0x0
0x000002
0x000004 second CALL sub2,0x0
0x000006
0x000008 third CALL sub3,0x0
0x00000a
0x00000c fourth CALL sub4,0x0
0x00000e

Code straightening should not affect the ability to debug source code.

4.6 TAIL MERGING -Ot+ / -Ot-

Tail merging attempts to combine multiple sequences of identical instructions into a

single sequence. For example, given the following C source code fragment:

if (user_value)
 PORTB = 0x55;
else
 PORTB = 0x80

When compiled with tail merging disabled (-Ot-), a MOVWF PORTB,0x0 is generated in

both cases of the if statement:

0x000000 MOVF user_value,0x0,0x0
0x000002 BZ 0xa
0x000004 MOVLW 0x55
0x000006 MOVWF PORTB,0x0
0x000008 BRA 0xe
0x00000a MOVLW 0x80
0x00000c MOVWF PORTB,0x0
0x00000e RETURN 0x0

However, when compiled with tail merging enabled (-Ot+), only a single

MOVWF PORTB,0x0 is generated and is used by both the if and else portions of the code:

0x000000 MOVF user_value,0x0,0x0
0x000002 BZ 0x8
0x000004 MOVLW 0x55
0x000006 BRA 0xa
0x000008 MOVLW 0x80
0x00000a MOVWF PORTB,0x0
0x00000c RETURN 0x0

When debugging source code compiled with this optimization enabled, the incorrect

source line may be highlighted because two or more source lines may share a single

sequence of assembly code, making it difficult for the debugger to identify which source

line is being executed.
apRNOUU^-page 46  2002 Microchip Technology Inc.

Optimizations
4.7 UNREACHABLE CODE REMOVAL -Ou+ / -Ou-

Unreachable code will attempt to remove any code that can be provably demonstrated

to not execute during normal program flow. An example where this may occur in C is:

if (1)
{
 x = 5;
}
else
{
 x = 6;
}

In this code it is obvious that the else portion of this code snippet can never be

reached. With unreachable code disabled (-Ou-), the generated assembly code will

include the instructions necessary to move 6 to x and the instruction to branch around

these instructions:

0x000000 MOVLB x
0x000002 MOVLW 0x5
0x000004 BRA 0xa
0x000006 MOVLB x
0x000008 MOVLW 0x6
0x00000a MOVWF x,0x1

With unreachable code enabled (-Ou+), the generated assembly code will not include

the instructions for the else:

0x000000 MOVLB x
0x000002 MOVLW 0x5
0x000004 MOVWF x,0x1

The unreachable code optimization may affect the ability to set breakpoints on certain

lines of C source code.

4.8 COPY PROPAGATION -Op+ / -Op-

Copy propagation is a transformation that, given an assignment x ← y for some

variables x and y, replaces later uses of x with uses of y, as long as intervening

instructions have not changed the value of either x or y. This optimization by itself does

not save any instructions, but enables dead code removal (see 4.10 “Dead Code

Removal”). An example where this may occur in C is:

char c;
void foo (char a)
{
 char b;
 b = a;
 c = b;
}

With copy propagation disabled (-Op-), the original code is mirrored in the generated

assembly code:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF b,c
0x000006
0x000008 RETURN 0x0
 2002 Microchip Technology Inc. apRNOUU^-page 47

MPLAB® C18 C Compiler User’s Guide
With copy propagation enabled (-Op+), instead of b being moved to c for the second

instruction, a is moved to c:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

Dead code removal would then delete the useless assignment of a to b (see

4.10 “Dead Code Removal”).

Copy propagation may affect the ability to debug source code.

4.9 REDUNDANT STORE REMOVAL -Or+ / -Or-

When assignment of the form x ← y appears multiple times in an instruction sequence

and the intervening code has not changed the value of x or y, the second assignment

may be removed. This is a special case of common subexpression elimination. An

example where this may occur in C is:

char c;
void foo (char a)
{
 c = a;
 c = a;
}

With redundant store removal disabled (-Or-), the original code is mirrored in the

generated assembly code:

0x000000 foo MOVFF a,c
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

With redundant store removal enabled (-Or+), the second assignment of c to a is not

required:

0x000000 foo MOVFF a,c
0x000002
0x000004 RETURN 0x0

Redundant store removal may affect the ability to set breakpoints on certain lines of C

source code.

4.10 DEAD CODE REMOVAL -Od+ / -Od-

Values computed in a function which are not used on any path to the function's exit are

considered dead. Instructions which compute only dead values are themselves

considered dead. Values stored to locations visible outside the scope of the function

are considered used (and therefore not dead) since it is not determinable whether the

value is used or not. Using the same example as that shown in 4.8 “Copy Propagation”:

char c;
void foo (char a)
{

char b;
b = a;
c = b;

}

apRNOUU^-page 48  2002 Microchip Technology Inc.

Optimizations
With copy propagation enabled (-Op+) and dead code removal disabled (-Od-), the

generated assembly code is that shown in 4.8 “Copy Propagation”:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF b,c
0x000006
0x000008 RETURN 0x0

With copy propagation enabled (-Op+) and dead code removal enabled (-Od+), instead

of b being moved to c for the second instruction, a is moved to c thus making the

assignment to b dead and able to be removed:

0x000000 foo MOVFF a,c
0x000002
0x000004 RETURN 0x0

The dead code removal optimization may affect the ability to set breakpoints on certain

lines of C source code.

4.11 PROCEDURAL ABSTRACTION -Opa+ / -Opa-

MPLAB C18, like most compilers, frequently generates code sequences that appear

multiple times in a single object file. This optimization reduces the size of the generated

code by creating a procedure containing the repeated code and replacing the copies

with a call to the procedure. Procedural abstraction is performed across all functions in

a given code section.

For example, given the following C source code fragment:

distance -= time * speed;

position += time * speed;

When compiled with procedural abstraction disabled (-Opa-), the code sequence

generated for time * speed is generated for each instruction listed above. It is shown

in bold below.

0x000000 main MOVLB time
0x000002 MOVF time,0x0,0x1
0x000004 MULWF speed,0x1
0x000006 MOVF PRODL,0x0,0x0
0x000008 MOVWF PRODL,0x0
0x00000a CLRF PRODL+1,0x0
0x00000c MOVF WREG,0x0,0x0
0x00000e SUBWF distance,0x1,0x1
0x000010 MOVF PRODL+1,0x0,0x0
0x000012 SUBWFB distance+1,0x1,0x1
0x000014 MOVF time,0x0,0x1
0x000016 MULWF speed,0x1
0x000018 MOVF PRODL,0x0,0x0
0x00001a MOVWF PRODL,0x0
0x00001c CLRF PRODL+1,0x0
0x00001e MOVF WREG,0x0,0x0
0x000020 ADDWF position,0x1,0x1
0x000022 MOVF PRODL+1,0x0,0x0
0x000024 ADDWFC position+1,0x1,0x1
0x000026 RETURN 0x0

Note: Procedural abstraction generates a saving in program space at the

potential expense of execution time.
 2002 Microchip Technology Inc. apRNOUU^-page 49

MPLAB® C18 C Compiler User’s Guide
Whereas, when compiled with procedural abstraction enabled (-Opa+), these two code

sequences are abstracted into a procedure and the repeated code is replaced by a call

to the procedure.

0x000000 main MOVLB time
0x000002 CALL _pa_0,0x0
0x000004
0x000006 SUBWF distance,0x1,0x1
0x000008 MOVF PRODL+1,0x0,0x0
0x00000a SUBWFB distance+1,0x1,0x1
0x00000c CALL _pa_0,0x0
0x00000e
0x000010 ADDWF position,0x1,0x1
0x000012 MOVF PRODL+1,0x0,0x0
0x000014 ADDWFC position+1,0x1,0x1
0x000016 RETURN 0x0
0x000018 __pa_0 MOVF time,0x0,0x1
0x00001a MULWF speed,0x1
0x00001c MOVF PRODL,0x0,0x0
0x00001e MOVWF PRODL,0x0
0x000020 CLRF PRODL+1,0x0
0x000022 MOVF WREG,0x0,0x0
0x000024 RETURN 0x0

Not all matches are able to be abstracted in a single pass of procedural abstraction.

Procedural abstraction is performed until no more abstractions occur or a maximum of

four passes. The number of passes can be controlled via the -pa=n command-line
option. Procedural abstraction can potentially add an additional 2n - 1 levels of function

calls, where n is the total number of passes. If the hardware stack is a limited resource

in an application, the -pa=n command-line option can be used to adjust the number of
times procedural abstraction is performed.

When debugging source code compiled with this optimization enabled, the incorrect

source line may be highlighted because two or more source lines may share a single

sequence of assembly code, making it difficult for the debugger to identify which source

line is being executed.
apRNOUU^-page 50  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Chapter 5. Sample Application
The following sample application will flash LEDs connected to PORTB of a PIC18C452

microcontroller. The command line used to build this application is:

mcc18 -p 18c452 -I c:\mcc18\h leds.c

where c:\mcc18 is the directory in which the compiler is installed. This sample

application was designed for use with a PICDEM 2 demo board. This sample covers

the following items:

1. Interrupt handling (#pragma interruptlow, interrupt vectors, interrupt service

routines and context saving)

2. System header files

3. Processor-specific header files

4. #pragma sectiontype

5. Inline assembly
 2002 Microchip Technology Inc. apRNOUU^-page 51

MPLAB® C18 C Compiler Getting Started
/* 1 */ #include <p18cxxx.h>
/* 2 */ #include <timers.h>
/* 3 */
/* 4 */ #define NUMBER_OF_LEDS 8
/* 5 */
/* 6 */ void timer_isr (void);
/* 7 */
/* 8 */ static unsigned char s_count = 0;
/* 9 */
/* 10 */ #pragma code low_vector=0x18
/* 11 */ void low_interrupt (void)
/* 12 */ {
/* 13 */ _asm GOTO timer_isr _endasm
/* 14 */ }
/* 15 */
/* 16 */ #pragma code
/* 17 */
/* 18 */ #pragma interruptlow timer_isr save=PROD
/* 19 */ void
/* 20 */ timer_isr (void)
/* 21 */ {
/* 22 */ static unsigned char led_display = 0;
/* 23 */
/* 24 */ INTCONbits.TMR0IF = 0;
/* 25 */
/* 26 */ s_count = s_count % (NUMBER_OF_LEDS + 1);
/* 27 */
/* 28 */ led_display = (1 << s_count++) - 1;
/* 29 */
/* 30 */ PORTB = led_display;
/* 31 */ }
/* 32 */
/* 33 */ void
/* 34 */ main (void)
/* 35 */ {
/* 36 */ TRISB = 0;
/* 37 */ PORTB = 0;
/* 38 */
/* 39 */ OpenTimer0 (TIMER_INT_ON & T0_SOURCE_INT & T0_16BIT);
/* 40 */ INTCONbits.GIE = 1;
/* 41 */
/* 42 */ while (1)
/* 43 */ {
/* 44 */ }
/* 45 */ }
apRNOUU^-page 52  2002 Microchip Technology Inc.

Sample Application
Line 1: This line includes the generic processor header file. The correct processor is

selected via the -p command-line option. (See 2.5.1 “System Header Files”,

2.10 “Processor-Specific Header Files”)

Line 10: For PIC18 devices, the low interrupt vector is found at 000000018h. This line

of code changes the default code section to the absolute code section named

low_vector located at address 0x18. (See 2.9.1 “#pragma sectiontype”,

2.9.2.3 “Interrupt Vectors”)

Line 13: This line contains inline assembly that will jump to the ISR. (See 2.8.2 “Inline

Assembly”, 2.9.2.3 “Interrupt Vectors”)

Line 16: This line returns the compiler to the default code section. (See 2.9.1 “#pragma

sectiontype”, Table 2-7)

Line 18: This line specifies the function timer_isr as a low-priority interrupt service

routine. This is required in order for the compiler to generate a RETFIE instruction

instead of a RETURN instruction for the timer_isr function. In addition, it ensures that

PROD special function register will be saved. (See 2.9.2 “#pragma interruptlow fname

#pragma interrupt fname”, 2.9.2.4 “ISR Context Saving”)

Line 19-20: These lines define the timer_isr function. Notice that it does not take any

parameters, and does not return anything (as required by ISRs). (See 2.9.2.2 “Interrupt

Service Routines”)

Line 24: This line clears the TMR0 interrupt flag to stop the program from processing

the same interrupt multiple times. (See 2.10 “Processor-Specific Header Files”)

Line 30: This line demonstrates how to modify the special function register PORTB in C.

(See 2.10 “Processor-Specific Header Files”)

Line 36-37: These lines initialize the special function registers TRISB and PORTB. (See

2.10 “Processor-Specific Header Files”)

Line 39: This line enables the TMR0 interrupt, setting up the timer as an internal 16-bit

clock.

Line 40: This line enables global interrupts. (See 2.10 “Processor-Specific Header

Files”)
 2002 Microchip Technology Inc. apRNOUU^-page 53

MPLAB® C18 C Compiler Getting Started
NOTES:
apRNOUU^-page 54  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Appendix A. COFF File Format
The Microchip COFF specification is based upon the UNIX System V COFF format as

described in Understanding and Using COFF, Gintaras R. Gircys © 1988, O’Reilly and

Associates, Inc. Special mention is made where the Microchip format differs from that

described there.

A.1 struct filehdr - FILE HEADER

The filehdr structure holds information regarding the file. It is the first entry in a COFF

file. It is used to denote where the optional file header, symbol table and section

headers begin.

typedef struct filehdr
{

unsigned short f_magic;
unsigned short f_nscns;
unsigned long f_timdat;
unsigned long f_symptr;
unsigned long f_nsyms;
unsigned short f_opthdr;
unsigned short f_flags;

} filehdr_t;

A.1.1 unsigned short f_magic

The magic number is used to identify the implementation of COFF that the file follows.

For Microchip PICmicro COFF files, this number is 0x1234.

A.1.2 unsigned short f_nscns

The number of sections in the COFF file.

A.1.3 unsigned long f_timdat

The time and date stamp when the COFF file was created (tÜáë=î~äìÉ=áë=~=Åçìåí=çÑ=íÜÉ=

åìãÄÉê=çÑ=ëÉÅçåÇë=ëáåÅÉ=ãáÇåáÖÜí=g~åì~êó=NI=NVTMFK

A.1.4 unsigned long f_symptr

A pointer to the symbol table.

A.1.5 unsigned long f_nsyms

The number of entries in the symbol table.

A.1.6 unsigned short f_opthdr

The size of the optional header record.
 2002 Microchip Technology Inc. apRNOUU^-page 55

MPLAB® C18 C Compiler User’s Guide
A.1.7 unsigned short f_flags

Information on what is contained in the COFF file. Table A-1 shows the different file

header flags, along with a description and respective values.

TABLE A-1: FILE HEADER FLAGS

A.2 struct opthdr - OPTIONAL FILE HEADER

The opthdr structure contains implementation dependent file level information. For

Microchip PIC COFF files, it is used to specify the name of the target processor, version

of the compiler/assembler, and to define relocation types.

Note that the layout of this header is specific to the implementation (i.e., the Microchip

optional header is not the same format as the System V optional header).

typedef struct opthdr
{

unsigned short magic;
unsigned short vstamp;
unsigned long proc_type;
unsigned long rom_width_bits;
unsigned long ram_width_bits;

} opthdr_t;

A.2.1 unsigned short magic

The magic number can be used to determine the appropriate layout.

A.2.2 unsigned short vstamp

Version stamp.

Flag Description Value

F_RELFLG Relocation information has been stripped from the

COFF file.

0x0001

F_EXEC The file is executable, and has no unresolved external

symbols.

0x0002

F_LNNO Line number information has been stripped from the

COFF file.

0x0004

L_SYMS Local symbols have been stripped from the COFF file. 0x0080

F_GENERIC The COFF file is processor independent. 0x8000
apRNOUU^-page 56  2002 Microchip Technology Inc.

COFF File Format
A.2.3 unsigned long proc_type

Target processor type. Table A-2 shows the processor type along with the associated

value stored in this field.

TABLE A-2: TARGET PROCESSOR TYPE

A.2.4 unsigned long rom_width_bits

Width of program memory in bits.

A.2.5 unsigned long ram_width_bits

Width of data memory in bits.

Processor Value

PIC18C452 0x8452

PIC18C252 0x8252

PIC18C242 0x8242

PIC18C442 0x8442

PIC18C658 0x8658

PIC18C858 0x8858

PIC18C601 0x8601

PIC18C801 0x8801

PIC18F242 0x242F

PIC18F252 0x252F

PIC18F442 0x442F

PIC18F452 0x452F

PIC18F248 0x8248

PIC18F258 0x8258

PIC18F448 0x8448

PIC18F458 0x8458

PIC18F6620 0xA662

PIC18F6720 0xA672

PIC18F8620 0xA862

PIC18F8720 0xA872

PIC18F1220 0xA122

PIC18F1320 0xA132

PIC18F2320 0xA232

PIC18F4320 0xA432

PIC18F2220 0xA222

PIC18F4220 0xA422
 2002 Microchip Technology Inc. apRNOUU^-page 57

MPLAB® C18 C Compiler User’s Guide
A.3 struct scnhdr - SECTION HEADER

The scnhdr structure contains information related to an individual section. The

Microchip PIC COFF files make a slight departure from the normal COFF definition of

the section name. Since the Microchip PIC COFF section names may be longer than

eight characters, the Microchip PIC COFF files allow a string table entry for long

names.

typedef struct scnhdr
{

union
{
 char _s_name[8] /* section name is a string */
 struct
 {
 unsigned long _s_zeroes
 unsigned long _s_offset
 }_s_s;
}_s;

unsigned long s_paddr;
unsigned long s_vaddr;
unsigned long s_size;
unsigned long s_scnptr;
unsigned long s_relptr;
unsigned long s_lnnoptr;
unsigned short s_nreloc;
unsigned short s_nlnno;
unsigned long s_flags;

} scnhdr_t;

A.3.1 union _s

A string or a reference into the string table. Strings of fewer than eight characters are

stored directly, and all others are stored in the string table. If the first four characters of

the string are 0, then the last four bytes are assumed to be an offset into the string table.

This is a bit nasty as it is not strictly conforming to the ANSI specification (i.e., type

munging is undefined behavior by the standard), but it is effective and it maintains

binary compatibility with the System V layout, which other options would not do. This

implementation has the advantage of mirroring the standard System V structure used

for long symbol names.

A.3.1.1 char s_name[8]

In-place section name. If the section name is fewer than eight characters long, then the

section name is stored in place.

A.3.1.2 struct _s_s

Section name is stored in the string table. If the first four characters of the section name

are zero, then the last four form an offset into the string table to find the name of the

section.

A.3.1.2.1 unsigned long _s_zeroes

First four characters of the section name are zero.

A.3.1.2.2 unsigned long _s_offset

Offset of section name in the string table.
apRNOUU^-page 58  2002 Microchip Technology Inc.

COFF File Format
A.3.1.3 unsigned long s_paddr

Physical address of the section.

A.3.1.4 unsigned long s_vaddr

Virtual address of the section. Always contains the same value as s_paddr.

A.3.2 unsigned long s_size

Size of this section.

A.3.3 unsigned long s_scnptr

Pointer to the raw data in the COFF file for this section.

A.3.4 unsigned long s_relptr

Pointer to the relocation information in the COFF file for this section.

A.3.5 unsigned long s_lnnoptr

Pointer to the line number information in the COFF file for this section.

A.3.6 unsigned short s_nreloc

The number of relocation entries for this section.

A.3.7 unsigned short s_nlnno

The number of line number entries for this section.

A.3.8 unsigned long s_flags

Section type and content flags. The flags which define the section type and the section

qualifiers are stored as bitfields in the s_flags field. Masks are defined for the bitfields

to ease access. Table A-3 shows the different section header flags, along with a

description and respective values.

TABLE A-3: SECTION HEADER FLAGS

Flag Description Value

STYP_TEXT Section contains executable code. 0x00020

STYP_DATA Section contains initialized data. 0x00040

STYP_BSS Section contains uninitialized data. 0x00080

STYP_DATA_ROM Section contains initialized data for

program memory.

0x00100

STYP_ABS Section is absolute. 0x01000

STYP_SHARED Section is shared across banks. 0x02000

STYP_OVERLAY Section is overlaid with other sections of

the same name from different object

modules.

0x04000

STYP_ACCESS Section is available using access bit. 0x08000

STYP_ACTREC Section contains the overlay activation

record for a function.

0x10000
 2002 Microchip Technology Inc. apRNOUU^-page 59

MPLAB® C18 C Compiler User’s Guide
A.4 struct reloc - RELOCATION ENTRY

Any instruction that accesses a relocatable identifier (variable, function, etc.) must have

a relocation entry. This differs from the System V relocation data, where the offset is

stored in the location being relocated to, in that the offset to add to the base address of

the symbol is stored in the relocation entry. This is necessary because Microchip

relocations are not restricted to just filling in an address+offset value into the data

stream, but also do simple code modifications. It is much more straightforward to store

the offset here, at the cost of a slightly increased file size.

typedef struct reloc
{

unsigned long r_vaddr;
unsigned long r_symndx;
short r_offset;
unsigned short r_type;

} reloc_t;

A.4.1 unsigned long r_vaddr

Address of reference (byte offset relative to start of raw data).

A.4.2 unsigned long r_symndx

Index into symbol table.

A.4.3 short r_offset

Signed offset to be added to the address of symbol r_symndx.

A.4.4 unsigned short r_type

Relocation type, implementation defined values. Table A-4 lists the relocation types,

along with a description and respective values.
apRNOUU^-page 60  2002 Microchip Technology Inc.

COFF File Format
TABLE A-4: RELOCATION TYPES

Type Description Value

RELOCT_CALL CALL instruction (first word only on PIC18) 1

RELOCT_GOTO GOTO instruction (first word only on PIC18) 2

RELOCT_HIGH Second 8 bits of an address 3

RELOCT_LOW Low order 8 bits of an address 4

RELOCT_P 5 bits of address for the P operand of a PIC17

MOVFP or MOVPF instruction
5

RELOCT_BANKSEL Generate the appropriate instruction to bank

switch for a symbol

6

RELOCT_PAGESEL Generate the appropriate instruction to page

switch for a symbol

7

RELOCT_ALL 16 bits of an address 8

RELOCT_IBANKSEL Generate indirect bank selecting instructions 9

RELOCT_F 8 bits of address for the F operand of a PIC17

MOVFP or MOVPF instruction
10

RELOCT_TRIS File register address for TRIS instruction 11

RELOCT_MOVLR MOVLR bank PIC17 banking instruction 12

RELOCT_MOVLB MOVLB PIC17 and PIC18 banking instruction 13

RELOCT_GOTO2 Second word of an PIC18 GOTO instruction 14

RELOCT_CALL2 Second word of an PIC18 CALL instruction 14

RELOCT_FF1 Source register of the PIC18 MOVFF instruction 15

RELOCT_FF2 Destination register of the PIC18 MOVFF instruc-
tion

16

RELOCT_LFSR1 First word of the PIC18 LFSR instruction 17

RELOCT_LFSR2 Second word of the PIC18 LFSR instruction 18

RELOCT_BRA PIC18 BRA instruction 19

RELOCT_RCALL PIC18 RCALL instruction 19

RELOCT_CONDBRA PIC18 relative conditional branch instructions 20

RELOCT_UPPER Highest order 8 bits of a 24-bit address 21

RELOCT_ACCESS PIC18 access bit 22

RELOCT_PAGESEL_WREG Selecting the correct page using WREG as scratch 23

RELOCT_PAGESEL_BITS Selecting the correct page using bit set/clear

instructions

24

RELOCT_SCNSZ_LOW
RELOCT_SCNSZ_HIGH
RELOCT_SCNSZ_UPPER

Size of a section 25

26

27

RELOCT_SCNEND_LOW
RELOCT_SCNEND_HIGH
RELOCT_SCNEND_UPPER

Address of the end of a section 28

29

30

RELOCT_SCNEND_LFSR1
RELOCT_SCNEND_LFSR2

Address of the end of a section on LFSR 31

32
 2002 Microchip Technology Inc. apRNOUU^-page 61

MPLAB® C18 C Compiler User’s Guide
A.5 struct syment - SYMBOL TABLE ENTRY

Symbols are created for all identifiers, as well as sections, function begins, function

ends, block begins and block ends.

#define SYMNMLEN 8
struct syment
{

union
{
 char _n_name[SYMNMLEN];
 struct
 {
 unsigned long _n_zeroes;
 unsigned long _n_offset;
 } _n_n;
 char *_n_nptr[2];
} _n;

unsigned long n_value;
short n_scnum;
unsigned short n_type;
char n_sclass;
char n_numaux;

}

A.5.1 union _n

The symbol name may be stored directly as a string, or it may be a reference to the

string table. Symbol names of fewer than eight characters are stored here, with all

others being stored in the string table. It is from this structure that the inspiration comes

for extending the section data structures to allow for section names to be stored in the

symbol table.

A.5.1.1 char _n_name [SYMNMLEN]

In-place symbol name, if fewer than eight characters long.

A.5.1.2 struct _n_n

Symbol name is located in string table. If the first four characters of the symbol name

are zero, then the last four form an offset into the string table to find the name of the

symbol.

A.5.1.2.1 unsigned long _n_zeros

First four characters of the symbol name are zero.

A.5.1.2.2 unsigned long _n_offset

Offset of symbol name in the string table.

A.5.1.3 char *_n_nptr

Allows for overlaying.

A.5.2 unsigned long n_value

Value of symbol. Typically, this is the address of the symbol within the section in which

it resides. For link-time constants (e.g., the Microchip symbol _stksize), the value is a

literal value and not an address. To the linker, there is typically no difference. The

distinction is only in the usage in the application code.
apRNOUU^-page 62  2002 Microchip Technology Inc.

COFF File Format
A.5.3 short n_scnum

References the section number where this symbol is located.

A.5.4 unsigned short n_type

Base type and derived type.

A.5.4.4 SYMBOL TYPES

Table A-5 lists the base types, along with a description and respective values.

TABLE A-5: BASE SYMBOL TYPES

A.5.4.5 DERIVED TYPES

Pointers, arrays, and functions are handled via derived types. Table A-6 lists the

derived types, along with a description and respective values.

TABLE A-6: DERIVED TYPES

A.5.5 char n_sclass

Storage class of the symbol. Table A-7 lists the storage classes, along with a

description and respective values.

Type Description Value

T_NULL null 0

T_VOID void 1

T_CHAR character 2

T_SHORT short integer 3

T_INT integer 4

T_LONG long integer 5

T_FLOAT floating point 6

T_DOUBLE double length floating point 7

T_STRUCT structure 8

T_UNION union 9

T_ENUM enumeration 10

T_MOE member of enumeration 11

T_UCHAR unsigned character 12

T_USHORT unsigned short 13

T_UINT unsigned integer 14

T_ULONG unsigned long 15

T_LNGDBL long double floating point 16

T_SLONG short long 17

T_USLONG unsigned short long 18

Derived Type Description Value

DT_NON no derived type 0

DT_PTR pointer 1

DT_FCN function 2

DT_ARY array 3
 2002 Microchip Technology Inc. apRNOUU^-page 63

MPLAB® C18 C Compiler User’s Guide
TABLE A-7: STORAGE CLASSES

A.5.6 char n_numaux

The number of auxiliary entries for this symbol.

Storage Class Description Value

C_EFCN Physical end of function 0xFF

C_NULL Null 0

C_AUTO Automatic variable 1

C_EXT External symbol 2

C_STAT Static 3

C_REG Register variable 4

C_EXTDEF External definition 5

C_LABEL Label 6

C_ULABEL Undefined label 7

C_MOS Member of structure 8

C_ARG Function argument 9

C_STRTAG Structure tag 10

C_MOU Member of union 11

C_UNTAG Union tag 12

C_TPDEF Type definition 13

C_USTATIC Undefined static 14

C_ENTAG Enumeration tag 14

C_MOE Member of enumeration 16

C_REGPARM Register parameter 17

C_FIELD Bit field 18

C_AUTOARG Automatic argument 19

C_LASTENT Dummy entry (end of block) 20

C_BLOCK “bb” or “eb” 100

C_FCN “bf” or “ef” 101

C_EOS End of structure 102

C_FILE File name 103

C_LINE Line number reformatted as symbol table entry 104

C_ALIAS Duplicate tag 105

C_HIDDEN External symbol in dmert public library 106

C_EOF End of file 107

C_LIST Absolute listing on or off 108

C_SECTION Section 109
apRNOUU^-page 64  2002 Microchip Technology Inc.

COFF File Format
A.6 struct coff_lineno - LINE NUMBER ENTRY

Any executable source line of code gets a coff_lineno entry in the line number table
associated with its section. For a Microchip PIC COFF file, this means that every

instruction may have a coff_lineno entry since the debug information is often for
debugging through the absolute listing file. Readers of this information should note that

the COFF file is not required to have an entry for every instruction, though it typically

does. This information is significantly different from the System V format.

struct coff_lineno
{

unsigned long l_srcndx;
unsigned short l_lnno;
unsigned long l_paddr;
unsigned short l_flags;
unsigned long l_fcnndx;

} coff_lineno_t;

A.6.1 unsigned long l_srcndx

Symbol table index of associated source file.

A.6.2 unsigned short l_lnno

Line number.

A.6.3 unsigned long l_paddr

Address of code for this line number entry.

A.6.4 unsigned short l_flags

Bit flags for the line number entry. Table A-8 lists the bit flags, along with a description

and respective values.

TABLE A-8: LINE NUMBER ENTRY FLAGS

A.6.5 unsigned long l_fcnndx

Symbol table index of associated function (if there is one).

A.7 struct aux_file - AUXILIARY SYMBOL TABLE ENTRY FOR A SOURCE FILE

typedef struct aux_file
{

unsigned long x_offset;
unsigned long x_incline;
char _unused[10];

} aux_file_t;

A.7.1 unsigned long x_offset

String table offset for filename.

A.7.2 unsigned long x_incline

Line number at which this file was included. If 0, file was not included.

Flag Description Value

LINENO_HASFCN Set if l_fcndx is valid 0x01
 2002 Microchip Technology Inc. apRNOUU^-page 65

MPLAB® C18 C Compiler User’s Guide
A.8 struct aux_scn - AUXILIARY SYMBOL TABLE ENTRY FOR A SECTION

typedef struct aux_scn
{

unsigned long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
char _unused[10];

} aux_scn_t;

A.8.1 unsigned long x_scnlen

Section length.

A.8.2 unsigned short x_nreloc

Number of relocation entries.

A.8.3 unsigned short x_nlinno

Number of line numbers.

A.9 struct aux_tag - AUXILIARY SYMBOL TABLE ENTRY FOR A
struct/union/enum TAGNAME

typedef struct aux_tag
{

char _unused[6];
unsigned short x_size;
char _unused2[4];
unsigned long x_endndx;
char _unused3[2];

} aux_tag_t;

A.9.1 unsigned short x_size

Size of struct/union/enum.

A.9.2 unsigned long x_endndx

Symbol index of next entry beyond this struct/union/enum.

A.10 struct aux_eos - AUXILIARY SYMBOL TABLE ENTRY FOR AN END OF
struct/union/enum

typedef struct aux_eos
{

unsigned long x_tagndx;
char _unused[2];
unsigned short x_size;
char _unused2[10];

} aux_eos_t;

A.10.1 unsigned long x_tagndx

Symbol index of a structure, union or enumerated tag.

A.10.2 unsigned short x_size

Size of a structure, union or enumeration.
apRNOUU^-page 66  2002 Microchip Technology Inc.

COFF File Format
A.11 struct aux_fcn - AUXILIARY SYMBOL TABLE ENTRY FOR
A FUNCTION NAME

typedef struct aux_fcn
{

unsigned long x_tagndx;
unsigned long x_size;
unsigned long x_lnnoptr;
unsigned long x_endndx;
short x_actscnum;

} aux_fcn_t;

A.11.1 unsigned long x_lnnoptr

File pointer to line numbers for this function.

A.11.2 unsigned long x_endndx

Symbol index of next entry beyond this function.

A.11.3 short x_actscnum

Section number of the static activation record data.

A.12 struct aux_fcn_calls - AUXILIARY SYMBOL TABLE ENTRY FOR
FUNCTION CALL REFERENCES

typedef struct aux_fcn_calls
{

unsigned long x_calleendx;
unsigned long x_is_interrupt;
char _unused[10];

} aux_fcn_calls_t;

A.12.1 unsigned long x_calleendx

Symbol index of the called function. If call of a higher order function, set to

AUX_FCN_CALLS_HIGHERORDER.

#define AUX_FCN_CALLS_HIGHERORDER ((unsigned long)-1)

A.12.2 unsigned long x_is_interrupt

Specifies whether the function is an interrupt, and if so, the priority of the interrupt.

0: not an interrupt

1: low priority

2: high priority
 2002 Microchip Technology Inc. apRNOUU^-page 67

MPLAB® C18 C Compiler User’s Guide
A.13 struct aux_arr - AUXILIARY SYMBOL TABLE ENTRY FOR AN ARRAY

#define X_DIMNUM 4
typedef struct aux_arr
{

unsigned long x_tagndx;
unsigned short x_lnno;
unsigned short x_size;
unsigned short x_dimen[X_DIMNUM];

} aux_arr_t;

A.13.1 unsigned short x_size

Size of array.

A.13.2 unsigned short x_dimen[X_DIMNUM]

Size of first four dimensions.

A.14 struct aux_eobf - AUXILIARY SYMBOL TABLE ENTRY FOR
THE END OF A BLOCK OR FUNCTION

typedef struct aux_eobf
{

char _unused[4];
unsigned short x_lnno;
char _unused2[12];

} aux_eobf_t;

A.14.1 unsigned short x_lnno

C source line number of the end, relative to start of block/function.

A.15 struct aux_bobf - AUXILIARY SYMBOL TABLE ENTRY FOR
THE BEGINNING OF A BLOCK OR FUNCTION

typedef struct aux_bobf
{

char _unused[4];
unsigned short x_lnno;
char _unused2[6];
unsigned long x_endndx;
char _unused3[2];

} aux_bobf_t;

A.15.1 unsigned short x_lnno

C source line number of the beginning, relative to start enclosing scope.

A.15.2 unsigned long x_endndx

Symbol index of next entry past this block/function.
apRNOUU^-page 68  2002 Microchip Technology Inc.

COFF File Format
A.16 struct aux_var - AUXILIARY SYMBOL TABLE ENTRY FOR A VARIABLE
OF TYPE struct/union/enum

typedef struct aux_var
{

unsigned long x_tagndx;
char _unused[2];
unsigned short x_size;
char _unused2[10];

} aux_var_t;

A.16.1 unsigned long x_tagndx

Symbol index of a structure, union or enumerated tagname.

A.16.2 unsigned short x_size

Size of the structure, union or enumeration.
 2002 Microchip Technology Inc. apRNOUU^-page 69

MPLAB® C18 C Compiler User’s Guide
NOTES:
apRNOUU^-page 70  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Appendix B. ANSI Implementation-Defined Behavior
B.1 INTRODUCTION

This section discusses MPLAB C18 implementation-defined behavior. The ISO

standard for C requires that vendors document the specifics of

“implementation-defined” features of the language.

Implementation-Defined Behavior for the following sections is covered in section G.3 of

the ANSI C Standard.

B.2 IDENTIFIERS

ANSI C Standard: “The number of significant initial characters (beyond 31) in an

identifier without external linkage (6.1.2).”

“The number of significant initial characters (beyond 6) in an

identifier with external linkage (6.1.2).”

“Whether case distinctions are significant in an identifier with

external linkage (6.1.2).”

Implementation: All MPLAB C18 identifiers have at least 31 significant characters.

Case distinctions are significant in an identifier with external

linkage.

B.3 CHARACTERS

ANSI C Standard: “The value of an integer character constant that contains more

than one character or a wide character constant that contains

more than one multibyte character (6.1.3.4).”

Implementation: The value of the integer character constant is the 8-bit value of

the first character. Wide characters are not supported.

ANSI C Standard: “Whether a ‘plain’ char has the same range of values as signed

char or unsigned char (6.2.1.1).”

Implementation: A plain char has the same range of values as a signed char. For

MPLAB C18, this may be changed to unsigned char via a

command line switch (-k).

Note: The section numbers in parenthesis, e.g., (6.1.2), refer to the ANSI C

standard X3.159-1989.
 2002 Microchip Technology Inc. apRNOUU^-page 71

MPLAB® C18 C Compiler User’s Guide
B.4 INTEGERS

ANSI C Standard: “A char, a short int or an int bit-field, or their signed or

unsigned varieties, or an enumeration type, may be used in an

expression wherever an int or unsigned int may be used. If an

int can represent all values of the original type, the value is

converted to an int; otherwise, it is converted to an unsigned

int. These are called the integral promotions. All other arithmetic

types are unchanged by the integral promotions.

“The integral promotions preserve value including sign. (6.2.1.1).”

Implementation: MPLAB C18 does not enforce this by default. The -Oi option can

be used to require the compiler to enforce the ANSI defined

behavior. See 2.7.1 “Integer Promotions”.

ANSI C Standard: “The result of converting an integer to a shorter signed integer, or

the result of converting an unsigned integer to a signed integer of

equal length, if the value cannot be represented (6.2.1.2).”

Implementation: When converting from a larger integer type to a smaller integer

type, the high order bits of the value are discarded and the

remaining bits are interpreted according to the type of the smaller

integer type. When converting from an unsigned integer to a

signed integer of equal size, the bits of the unsigned integer are

simply reinterpreted according to the rules for a signed integer of

that size.

ANSI C Standard: “The results of bitwise operations on signed integers (6.3).”

Implementation: The bitwise operators are applied to the signed integer as if it

were an unsigned integer of the same type (i.e., the sign bit is

treated as any other bit).

ANSI C Standard: “The sign of the remainder on integer division (6.3.5).”

Implementation: The remainder has the same sign as the quotient.

ANSI C Standard: “The result of a right shift of a negative-valued signed integral

type (6.3.7).”

Implementation: The value is shifted as if it were an unsigned integral type of the

same size (i.e., the sign bit is not propagated).

B.5 FLOATING-POINT

ANSI C Standard: “The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).”

“The direction of truncation when an integral number is converted

to a floating-point number that cannot exactly represent the

original value (6.2.1.3).”

“The direction of truncation or rounding when a floating-point

number is converted to a narrower floating-point number

(6.2.1.4).”

Implementation: See 2.1.2 “Floating-Point Types”.

The rounding to the nearest method is used.
apRNOUU^-page 72  2002 Microchip Technology Inc.

ANSI Implementation-Defined Behavior
B.6 ARRAYS AND POINTERS

ANSI C Standard: “The type of integer required to hold the maximum size of an

array — that is, the type of the sizeof operator, size_t (6.3.3.4,

7.1.1).”

Implementation: size_t is defined as an unsigned short long int.

ANSI C Standard: “The result of casting a pointer to an integer or vice versa (6.3.4).”

Implementation: The integer will contain the binary value used to represent the

pointer. If the pointer is larger than the integer, the representation

will be truncated to fit in the integer.

ANSI C Standard: “The type of integer required to hold the difference between two

pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).”

Implementation: ptrdiff_t is defined as an unsigned long short.

B.7 REGISTERS

ANSI C Standard: “The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).”

Implementation: The register storage-class specifier is ignored.

B.8 STRUCTURES AND UNIONS

ANSI C Standard: “A member of a union object is accessed using a member of a

different type (6.3.2.3).”

Implementation: The value of the member is the bits residing at the location for the

member interpreted as the type of the member being accessed.

ANSI C Standard: “The padding and alignment of members of structures (6.5.2.1).”

Implementation: Members of structures and unions are aligned on byte

boundaries.

B.9 BIT-FIELDS

ANSI C Standard: “Whether a ‘plain’ int bit-field is treated as a signed int or as

an unsigned int bit-field (6.5.2.1).”

Implementation: A “plain” int bit-field is treated as a signed int bit-field.

ANSI C Standard: “The order of allocation of bit-fields within a unit (6.5.2.1).”

Implementation: Bit-fields are allocated from least significant bit to most significant

bit in order of occurrence.

ANSI C Standard: “Whether a bit-field can straddle a storage-unit boundary

(3.5.2.1).”

Implementation: A bit-field cannot straddle a storage unit boundary.
 2002 Microchip Technology Inc. apRNOUU^-page 73

MPLAB® C18 C Compiler User’s Guide
B.10 ENUMERATIONS

ANSI C Standard: “The integer type chosen to represent the values of an

enumeration type (6.5.2.2).”

Implementation: signed int is used to represent the values of an enumeration

type.

B.11 SWITCH STATEMENT

ANSI C Standard: “The maximum number of case values in a switch statement

(6.6.4.2).”

Implementation: The maximum number of values is limited only by target memory.

B.12 PREPROCESSING DIRECTIVES

ANSI C Standard: “The method for locating includable source files (6.8.2).”

Implementation: See 2.5.1 “System Header Files”.

ANSI C Standard: “The support for quoted names for includable source files (6.8.2).”

Implementation: See 2.5.2 “User Header Files”.

ANSI C Standard: “The behavior on each recognized #pragma directive (6.8.6).”

Implementation: See 2.9 “Pragmas”.
apRNOUU^-page 74  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Appendix C. Command-Line Summary
Usage: mcc18 [options] file [options]

TABLE C.1: COMMAND-LINE SUMMARY

Option Description Reference

-?, --help Displays the help screen 1.2.2

-I=<path> Add 'path' to include path 2.5.1, 2.5.2

-fo=<name> Object file name 1.2.1

-fe=<name> Error file name 1.2.1

-k Set plain char type to unsigned char 2.1

-ls Large stack (can span multiple banks) 3.2.2

-ms Set compiler memory model to small model

(default)

2.6, 3.1

-ml Set compiler memory model to large model 2.6, 3.1

-O, -O+ Enable all optimizations (default) 4

-O- Disable all optimizations 4

-Od+ Enable dead code removal (default) 4.10

-Od- Disable dead code removal 4.10

-Oi+ Enable integer promotion 2.7.1

-Oi- Disable integer promotion (default) 2.7.1

-Om+ Enable duplicate string merging (default) 4.1

-Om- Disable duplicate string merging 4.1

-On+ Enable banking optimizer (default) 4.3

-On- Disable banking optimizer 4.3

-Op+ Enable copy propagation (default) 4.8, 4.10

-Op- Disable copy propagation 4.8, 4.10

-Or+ Enable redundant store elimination (default) 4.9

-Or- Disable redundant store elimination 4.9

-Ou+ Enable unreachable code removal (default) 4.7

-Ou- Disable unreachable code removal 4.7

-Os+ Enable code straightening (default) 4.5

-Os- Disable code straightening 4.5

-Ot+ Enable tail merging (default) 4.6

-Ot- Disable tail merging 4.6

-Ob+ Enable branch optimizations (default) 4.2

-Ob- Disable branch optimizations 4.2

-sca Enable default auto locals (default) 2.3

-scs Enable default static locals 2.3

-sco Enable default overlay locals (statically allocate

activation records)

2.3
 2002 Microchip Technology Inc. apRNOUU^-page 75

MPLAB® C18 C Compiler User’s Guide
Option Description Reference

-Oa+ Enable default data in access memory 2.9.1.3

-Oa- Disable default data in access memory (default) 2.9.1.3

-Ow+ Enable WREG tracking (default) 4.4

-Ow- Disable WREG tracking 4.4

-Opa+ Enable procedural abstraction (default) 4.11

-Opa- Disable procedural abstraction 4.11

-pa=<repeat count> Set procedural abstraction repeat count

(default = 4)

4.11

-p=<processor> Set processor (18c452 default) 1.2.4, 2.10

-D<macro>[=text] Define a macro 1.2.3

-w={1|2|3} Set warning level (default = 2) 1.2.2

-nw=<n> Suppress message <n> 1.2.2

-verbose Operate verbosely (show banner and other

information)

1.2

--help-message-list Display a list of all diagnostic messages 1.2.2

--help-message-all Display help for all diagnostic messages 1.2.2

--help-message=<n> Display help on diagnostic number <n> 1.2.2

TABLE C.1: COMMAND-LINE SUMMARY (Continued)
apRNOUU^-page 76  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Appendix D. MPLAB C18 Diagnostics
This appendix list errors, warnings and messages generated by the MPLAB C18

compiler.

D.1 ERRORS

1002: syntax error, ‘%s’ expected

The syntax of the pre-processor construct was expecting the specified

token. Common causes include typographical errors, missing required

operands to the directive, and mis-matched parenthesis.

1013: error in pragma directive

MPLAB C18 was expecting the pragma being parsed to be complete, but

did not see a new line. This would be caused by extra text following the

pragma.

1014: attribute mismatch in resumption of section ‘%s’

MPLAB C18 requires that a previously declared section’s attribute must

match those which are being specified in the current #pragma sectiontype

directive. This error can also occur when the current #pragma sectiontype

directive specifies overlay or access multiple times.

1016: integer constant expected for #line directive

The line number operand of the #line preprocessor directive must be an

integer constant.

1017: symbol name expected in ‘interrupt’ pragma

The ‘save=’ clause expects a comma-delimited list of statically allocated

in-scope symbol names which are to be saved and restored by the interrupt

function being specified. Common causes include specifying a symbol

which is not currently in scope, not including a header file which declares

the symbol being referenced, and typographical errors in the symbol name.

1018: function name expected in ‘interrupt’ pragma

The name of a function to be declared as an interrupt is expected as the first

parameter to the ‘interrupt’ pragma. The function symbol must be currently

in scope and must take no parameters and return no value. Common

causes include a missing prototype for the function being declared as an

interrupt and typographical errors.

1019: ‘%s’ is a compiler managed resource - it should not appear in a save= list

The symbol named is not valid in a save= clause of an interrupt declaration.

There are some locations which if saved/restored via a save= will produce

aberrant code. These locations do not need additional context save and can

be safely removed from the save= clause to correct the error.

1020: unexpected input following ‘%s’

Extra information exists on the given preprocessor construct.
 2002 Microchip Technology Inc. apRNOUU^-page 77

MPLAB® C18 C Compiler User’s Guide
1050: section address permitted only at definition

The absolute address in the location clause of the #pragma sectiontype

directive may only be specified in the first pragma defining this section.

1052: section overlay attribute does not match definition

MPLAB C18 requires that a previously declared section’s attribute must

match those which are being specified in the current #pragma sectiontype

directive.

1053: section share attribute does not match definition

MPLAB C18 requires that a previously declared section’s attribute must

match those which are being specified in the current #pragma sectiontype

directive.

1054: section type does not match definition

MPLAB C18 has previously seen this section name, but it was of a different

type (i.e., code, idata, udata, romdata).

1099: %s

source code ‘#error’ directive message

1100: syntax error

Invalid function type definition.

1101: lvalue required

An expression which designates an object is required. Common causes

include missing parentheses and a missing ‘*’ operator.

1102: cannot assign to ‘const’ modified object

An object qualified with ‘const’ is declared to be read-only data and

modifications to it are therefore not allowed.

1103: unknown escape sequence ‘%s’

The specified escape sequence is not known to the compiler. Check the

User’s Guide for a list of valid character escape sequences

1104: division by zero in constant expression

The compiler cannot process a constant expression that contains a divide

by (or modulus by) zero.

1105: symbol ‘%s’ has not been defined

A symbol has been referenced before it has been defined. Common causes

include a misspelled symbol name, a missing header file that declares the

symbol, and a reference to a symbol valid only in an inner scope.

1106: ‘%s’ is not a function

A symbol must be a function name in order to be declared as an interrupt

function

1107: interrupt functions must not take parameters

When the processor vectors to an interrupt routine, no parameters are

passed, so a function declared as an interrupt function should not expect

parameters.

1108: interrupt functions must not return a value

Since interrupts are invoked asynchronously by the processor, there will not

be a calling routine to which a value can be returned.
apRNOUU^-page 78  2002 Microchip Technology Inc.

MPLAB C18 Diagnostics
1109: type mismatch in redeclaration of ‘%s’

The type of the symbol declared is not compatible with the type of a

previous declaration of the same symbol. Common causes include missing

qualifiers or misplaced qualifiers.

1110: ‘auto’ symbol ‘%s’ not in function scope

Variables may only be allocated off the stack within the scope of a function.

1111: undefined label ‘%s’ in ‘%s’

The label has been referenced via a ‘goto’ statement, but has not been

defined in the function. Common causes include a misspelled label identifier

and a reference to an out of scope label, i.e., a label defined in another

function.

1112: integer type expected in switch control expression

The control expression for a switch statement must be an integer type.

Common causes include a missing ‘*’ operator and a missing ‘[]’ operator.

1113: integer constant expected for case label value

The value for a case label must be an integer constant.

1114: case label outside switch statement detected

A ‘case’ label is only valid inside the body of a switch statement. Common

causes include a misplaced ‘}’.

1115: multiple default labels in switch statement

A switch statement can only have a single ‘default’ label. Common causes

include a missing ‘}’ to close an inner switch.

1116: type mismatch in return statement

The type of the return value is not compatible with the declared return type

of the function. Common causes include a missing ‘*’ or ‘[]’ operator

1117: scalar type expected in ‘if’ statement

An ‘if’ statement control expression must be of scalar type, i.e., an integer

or a pointer.

1118: scalar type expected in ‘while’ statement

A ‘while’ statement control expression must be of scalar type, i.e., an integer

or a pointer.

1119: scalar type expected in ‘do..while’ statement

A ‘do..while’ statement control expression must be of scalar type, i.e., an

integer or a pointer.

1120: scalar type expected in ‘for’ statement

A ‘for’ statement control expression must be of scalar type, i.e., an integer

or a pointer.

1121: scalar type expected in ‘?:’ expression

A ‘?:’ operator control expression must be of scalar type, i.e., an integer or

a pointer.

1122: scalar operand expected for ‘!’ operator

The ‘!’ operator requires that its operand be of scalar type.

1123: scalar operands expected for ‘||’ operator

The logical OR operator, ‘||’, requires scalar operands.

1124: scalar operands expected for ‘&&’ operator

The logical AND operator, ‘&&’, requires scalar operands.
 2002 Microchip Technology Inc. apRNOUU^-page 79

MPLAB® C18 C Compiler User’s Guide
1125: ‘break’ must appear in a loop or switch statement

A ‘break’ statement must be inside a ‘while’, ‘do’, ‘for’ or ‘switch’ statement.

Common causes include a misplaced ‘}’.

1126: ‘continue’ must appear in a loop statement

A ‘continue’ statement must be inside a ‘while’, ‘do’, ‘for’ or ‘switch’

statement.

1127: operand type mismatch in ‘?:’ operator

The types of the result operands of the ‘?:’ operator must be either both

scalar types, or compatible types.

1128: compatible scalar operands required for comparison

A comparison operator must have operands of compatible scalar types.

1129: [] operator requires a pointer and an integer as operands

The array access operator, ‘[]’, requires that one operand be a pointer and

the other be an integer, that is, for ‘x[y]’ the expression ‘*(x+y)’ must be valid.

‘x[y]’ is functionally equivalent to ‘*(x+y)’.

1130: pointer operand required for ‘*’ operator

The ‘*’ dereference operator requires a pointer to a non-void object as its

operand

1131: type mismatch in assignment

The assignment operators require that the result of the right hand

expression be of compatible type with the type of the result of the left hand

expression. Common causes include a missing ‘*’ or ‘[]’ operator

1132: integer type expected for right hand operand of ‘-=’ operator

The ‘-=’ operator requires that the right hand side by of integer type when

the left hand side is of pointer type. Common causes include a missing ‘*’

or ‘[]’ operator.

1133: type mismatch in ‘-=’ operator

The types of the operands of the ‘-=’ operator must be such that for ‘x-=y’

the expression ‘x=x-y’ is valid.

1134: arithmetic operands required for multiplication operator

The ‘*’ and ‘*=’ multiplication operators require that their operands be of

arithmetic type. Common causes include a missing ‘*’ dereference operator

or a missing ‘[]’ index operator.

1134: arithmetic operands required for division operator

The ‘/’ and ‘/=’ division operators require that their operands be of arithmetic

type. Common causes include a missing ‘*’ dereference operator or a

missing ‘[]’ index operator.

1135: integer operands required for modulus operator

The ‘%’ and ‘%=’ division operators require that their operands be of integer

type. Common causes include a missing ‘*’ dereference operator or a

missing ‘[]’ index operator.

1136: integer operands required for shift operator

The bitwise shift operators require that their operands be of integer type.

Common causes include a missing ‘*’ dereference operator or a missing ‘[]’

index operator.
apRNOUU^-page 80  2002 Microchip Technology Inc.

MPLAB C18 Diagnostics
1137: integer types required for bitwise AND operator

The ‘&’ and ‘&=’ operators require that both operands be of integer type.

Common causes include a missing ‘*’ or ‘[]’ operator

1138: integer types required for bitwise OR operator

The ‘|’ and ‘|=’ operators require that both operands be of integer type.

Common causes include a missing ‘*’ or ‘[]’ operator

1139: integer types required for bitwise XOR operator

The ‘^’ and ‘^=’ operators require that both operands be of integer type.

Common causes include a missing ‘*’ or ‘[]’ operator

1140: integer type required for bitwise NOT operator

The ‘~’ operator requires that the operand be of integer type. Common

causes include a missing ‘*’ or ‘[]’ operator

1141: integer type expected for pointer addition

The addition operator requires that when one operand is of pointer type, the

other must be of integer type. Common causes include a missing ‘*’ or ‘[]’

operator.

1142: type mismatch in ‘+’ operator

The types of the operands of the ‘+’ operator must be such that one operand

is of pointer type and the other is of integer type or both operands are of

arithmetic type.

1143: pointer difference requires pointers to compatible types

When calculating the difference between two pointers, the pointers must

point to objects of compatible type. Common causes include missing

parentheses and a missing ‘[]’ operator.

1144: integer type required for pointer subtraction

When the left hand operand of the subtraction operator is of pointer type,

the right hand operand must be of integer type. Common causes include a

missing ‘*’ or ‘[]’ operator.

1145: arithmetic type expected for subtraction operator

When the left hand operand is not of pointer type, the subtraction operator

requires that both operands by of arithmetic type.

1146: type mismatch in argument %d

The type of an argument to a function call must be compatible with the

declared type of the corresponding parameter

1147: scalar type expected for increment operator

The increment operators require that the operand be a modifiable lvalue of

scalar type.

1148: scalar type expected for decrement operator

The decrement operators require that the operand be a modifiable lvalue of

scalar type.

1149: arithmetic type expected for unary plus

The unary plus operator requires that its operand be of arithmetic type

1150: arithmetic type expected for unary minus

The unary minus operator requires that its operand be of arithmetic type
 2002 Microchip Technology Inc. apRNOUU^-page 81

MPLAB® C18 C Compiler User’s Guide
1151: struct or union object designator expected

The member access operators, ‘.’ and ‘->’ require operands of struct/union

and pointer to struct/union, respectively

1152: scalar or void type expected for cast

An explicit cast requires that the type of the operand be of scalar type and

the type being cast to be scalar type or void type.

1153: cannot assign array type objects

An object of array type may not be directly assigned. Assignment is allowed

only to array elements.

1154: parameter %d in ‘%s’ must have a name

Parameters in a function definition must have an identifier declarator to

name them. The naming declarator is not required in prototypes, but is in a

definition.

1160: conflicting storage classes specified

A declaration may only specify a single storage class.

1161: conflicting base types specified

A declaration may only specify a single base type (void, int, float, et.al.).

Multiple instances of the same base type is also an error (e.g.,int int x;)

1162: both ‘signed’ and ‘unsigned’ specified

A type may include only one of ‘signed’ and ‘unsigned.’

1163: function must be located in program memory

All functions must be located in program memory, as data memory is not

executable.

1164: parameter storage class must be ‘auto’

MPLAB C18 requires all parameters to be of ‘auto’ storage class. The

MPLAB C17 construct of ‘static’ storage duration parameters is not

supported by MPLAB C18.

1165: reference to incomplete tag ‘%s’

A forward reference struct or union tag cannot be referenced directly in a

declaration. Only pointers to a forward referenced tag may be declared.

1166: invalid type specification

The type specification is not valid. Common causes include typographic

errors or misuse of a typedef type. e.g., “int enum myEnum xyz;” has an

invalid type specification.

1167: redefinition of enum tag ‘%s’

An enumeration tag may only be defined once. Common causes include

multiple inclusions of a header file which defines the enumeration tag.

1168: reference to undefined enumeration tag ‘%s’

An enumeration tag must be defined prior to any declarations which refer-

ence it. Unlike structure and union tags, forward references to enumeration

tags are not allowed.

1169: anonymous members allowed in unions only

An anonymous structure member may be declared only as a member of a

union.

1170: non-integral type bitfield detected

The type of a bitfield member of a structure must be an integral type.
apRNOUU^-page 82  2002 Microchip Technology Inc.

MPLAB C18 Diagnostics
1171: bitfield width greater than 8 detected

A bitfield must fit within a single storage unit, which for MPLAB C18 is a

byte. Thus, a bitfield must contain 8 or fewer bits.

1172: enumeration value of ‘%s’ does not match previous

When the same enumeration constant name is used in multiple

enumeration tags, the value of the enumeration constant must be the same

in each enumeration.

1173: cannot locate a parameter in program memory, ‘%s’

Since all parameters are located on the stack, it is not possible to locate a

parameter in program memory. Common causes include a mis-typed

pointer to program memory declaration.

1174: local ‘%s’ in program memory can not be ‘auto’

A local variable which is located in program memory must be declared as

static or extern, as ‘auto’ local variables must be located on the stack.

1175: static parameter detected in function pointer ‘%s’

Function pointers require parameters be passed via the stack. When

compiling with static locals enabled, declare parameters for function

pointers and for functions whose addresses are assigned to function

pointers explicitly to ‘auto’.

1176: the sign was already specified

A type may include only one ‘signed’ or ‘unsigned’.

1200: cannot reference the address of a bitfield

The address of a bitfield member of a structure cannot be referenced

directly.

1201: cannot dereference a pointer to ‘void’ type

The ‘*’ dereference operator requires a pointer to a non-void object as its

operand

1202: call of non-function

The operand of the ‘()’ function call post-fix operator must be of type ‘pointer

to function.’ Most commonly, this is a function identifier. Common causes

include missing scope parentheses.

1203: too few arguments in function call

To call a function, the number of arguments passed must match exactly the

number of parameters declared for the function.

1204: too many arguments in function call

To call a function, the number of arguments passed must match exactly the

number of parameters declared for the function.

1205: unknown member ‘%s’ in ‘%s’

The structure or union tag does not have a member of the name requested.

Common causes include a misspelled member name and a missing

member access operator for a nested structure.

1206: unknown member ‘%s’

The structure or union type does not have a member of the name

requested. Common causes include a misspelled member name and a

missing member access operator for a nested structure.
 2002 Microchip Technology Inc. apRNOUU^-page 83

MPLAB® C18 C Compiler User’s Guide
1207: tag ‘%s’ is incomplete

An incomplete struct or union tag cannot be referenced by the member

access operators. Common causes include a misspelled structure tag

name in the symbol definition.

1208: “#pragma interrupt” detected inside function body

The ‘interrupt’ pragma is only available at file level scope.

1209: unknown function ‘%s’ in #pragma interrupt

The ‘interrupt’ pragma requires that the function being declared as an

interrupt have an active prototype when the pragma is encountered

1210: unknown symbol ‘%s’ in interrupt save list

The ‘interrupt’ pragma requires that symbols listed in the ‘save’ list must be

declared and of in scope

1211: missing definition for interrupt function ‘%s’

The function was declared as an interrupt, but was never defined. The

function definition of an interrupt function must be in the same module as

the pragma declaring the function as an interrupt.

1212: static function ‘%s’ referenced but not defined

The function has been declared as static and has been referenced

elsewhere in the module, but there is no definition for the function present.

Common causes include a misspelled function name in the function

definition.

1213: initializer list expected

The symbol being initialized requires a brace-enclosed initializer list, but a

single value initializer was found.

1214: constant expression expected in initializer

The initializer value for a statically allocated symbol must be a constant

expression.

1215: initialization of bitfield members is not currently supported

Bitfield structure members cannot currently be initialized explicitly.

1216: string initializer used for non-character array object

A string literal initializer is only valid for initializing objects of type ‘array of

char’ or type ‘pointer to char’ (either can be unsigned char as well).

1218: extraneous initializer values

The count of initializer values does not agree with the number of expected

values based on the type of the object being initialized. There are too many

values in the initializer list.

1219: integer constant expected

A constant expression of integral type was expected, but an expression of

non-integral type or a non-constant expression was found.

1220: initializer detected in typedef declaration of ‘%s’

A typedef declaration cannot include initializers

1221: empty initializer list detected

An initializer list cannot be empty. There must be one or more initializer

values between the braces.
apRNOUU^-page 84  2002 Microchip Technology Inc.

MPLAB C18 Diagnostics
1250: ‘%s’ operand %s must be a literal

The specified operand for the opcode must be a literal value, not a symbol

reference.

1251: ‘%s’ operand count mismatch

The number of operands found for the specified opcode does not match the

number of operands expected. Unlike MPASM, the MPLAB C1x in-line

assembler expects all operands to be explicitly specified. There are no

default values for operands such as the access bit or destination bit.

1252: invalid opcode ‘%s’ detected for processor ‘%s’

The opcode specified is not valid for the target processor. Common causes

include porting in-line assembly code from a processor with a different

instruction set (e.g., PIC17CXX to PIC18CXX) and typographical errors in

the spelling of the opcode.

1253: constant operand expected

Operands to in-line assembly opcodes must resolve to a constant

expression, where a constant expression is defined as a literal constant or

a statically allocated symbol reference optionally plus or minus an integer

constant. Common causes include the use of a dynamically allocated

symbol (‘auto’ local variables and parameters) as the operand to an in-line

assembly opcode.

1300: stack frame too large

The size of the stack frame has exceeded the maximum addressable size.

Commonly caused by too many local variables allocated as ‘auto’ storage

class in a single function.

1301: parameter frame too large

The size of the parameter frame has exceeded the maximum addressable

size. Commonly caused by too many parameters being passed to a single

function.

1302: old style function declarations not supported

MPLAB C18 does not currently support the old K&R style function

definitions. The in-line parameter type declarations recommended by the

ANSI standard should be used instead.

1303: ‘near’ symbol defined in non-access qualified section

Statically allocated variables allocated into a non-access qualified section

cannot be accessed via the access bit, and therefore defining them with the

‘near’ range qualifier would result in incorrect access to the location.

1500: unable to open file ‘%s’

The compiler was unable to open the named file. Common causes include

misspelled filename and insufficient access rights

1501: unable to locate file ‘%s’

The compiler was unable to locate the named file. Common causes include

misspelled filename and misconfigured include path.

1502: unknown option ‘%s’

The specified command-line option is not a valid MPLAB C1X option.

1503: multi-bank stack supported only on 18Cxx core

The software stack can cross bank boundaries only on the 18CXX

processors.
 2002 Microchip Technology Inc. apRNOUU^-page 85

MPLAB® C18 C Compiler User’s Guide
1504: redefinition of ‘%s’

The same function name may not have multiple definitions.

1505: redeclaration of ‘%s’

The same variable name may not have multiple defining declarations.

1512: redefinition of label ‘%s’

The same label may not have multiple definitions in the same function.

1900: %s processor core not supported

The compiler does not currently support the specified processor core.

Commonly caused by a misspecification of processor name or an

invocation of the incorrect compiler executable.
apRNOUU^-page 86  2002 Microchip Technology Inc.

MPLAB C18 Diagnostics
D.2 WARNINGS

2001: non-near symbol ‘%s’ declared in access section ‘%s’

Statically allocated variables declared into an access qualified section will

always be placed by the linker into access data memory, and can therefore

always be qualified with the ‘near’ range qualifier. Not specifying the ‘near’

range qualifier will not cause incorrect code, but may result in extraneous

bank select instructions.

2002: unknown pragma ‘%s’

The compiler has encountered a pragma directive which is not recognized.

As per ANSI/ISO requirements, the pragma is ignored. Common causes

include misspelled pragma names.

2052: unexpected return value

A return of a value statement has been detected in a function declared to

return no value. The return value will be ignored.

2053: return value expected

A return with no value has been detected in a function declared to return a

value. The return value will be undefined.

2054: suspicious pointer conversion

A pointer has been used as an integer or an integer has been used as a

pointer without an explicit cast.

2055: expression is always false

The control expression of a conditional statement evaluates to a constant

false value

2056: expression is always true

The control expression of a conditional statement evaluates to a constant

true value

2057: possibly incorrect test of assignment

An implicit test of an assignment expression, (e.g., ‘if(x=y)’ is often seen

when an ‘=’ operator has been used when a ‘==’ operator was intended).

2058: call of function without prototype

A function call has been made without an in-scope function prototype for

the function being called. This can be unsafe, as no type-checking for the

function arguments can be performed.

2059: unary minus of unsigned value

The unary minus operator is normally only applied to signed values.

2060: shift expression has no effect

Shifting by zero will not change the value being shifted.

2061: shift expression always zero

The number of bits that the value is being shifted by is greater than the

number of bits in the value being shifted. The result will always be zero.

2062: ‘->’ operator expected, not ‘.’

A struct/union member access via a pointer to struct/union has been

performed using the ‘.’ operator.

2063: ‘.’ operator expected, not ‘->’

A direct struct/union member access has been performed using the ‘->’

operator.
 2002 Microchip Technology Inc. apRNOUU^-page 87

MPLAB® C18 C Compiler User’s Guide
2064: static function ‘%s’ not defined

The function has been declared as static, but there is no definition for the

function present. Common causes include a misspelled function name in

the function definition.

2065: static function ‘%s’ never referenced

The static function has been defined, but has not been referenced.

2066: type qualifier mismatch in assignment

Pointer assignment where the source and destination pointers point to

objects of compatible type, but the source pointer points to an object which

is ‘const’ or ‘volatile’ qualified and the destination pointer does not.

2067: type qualifier mismatch in argument %d

The argument expression is a pointer to a ‘const’ or ‘volatile’ qualified

version of a compatible type to the parameter’s type, but the parameter is

a pointer to a non-’const’ or ‘volatile’ qualified version.

2068: obsolete use of implicit ‘int’ detected.

The ANSI standard allows a variable to be declared without a base type

being specified, e.g., “extern x;”, in which case a base type of ‘int’ is implied.

This usage is deprecated by the standard as obsolete, and therefore a

diagnostic is issued to that effect.

2069: enumeration value exceeds maximum range

An enumeration value has been declared which is not expressible in a

‘signed long’ format and the enumeration tag has negative enumeration

values. An ‘unsigned long’ representation will be used for the enumeration,

but relative comparisons of those enumeration constants which have

negative representations may not behave as expected.

2070: constant value %d is too wide for bitfield and will be truncated

The given value cannot fit into the bitfield. Truncation by ANDing with the

size of the bitfield was performed

2071: %s cannot have ‘overlay’ storage class; replacing with ‘static’

Parameters with ‘overlay’ storage class are not permitted at this time. When

the default local storage class is ‘overlay’, the ‘static’ storage class will be

assigned to parameters.

2072: invalid storage class specifier for %s; ignoring

The storage class specifier used is not permitted for this declaration.

2073: null-terminated initializer string too long

The null-terminated initializer string cannot fit in the array object.
apRNOUU^-page 88  2002 Microchip Technology Inc.

MPLAB C18 Diagnostics
D.3 MESSAGES

3000: test of floating point for equality detected

Testing two floating point values for equality will not always yield the desired

results, as two expressions which are mathematically equivalent may

evaluate to slightly different values when computed due to rounding error.

3001: optimization skipped for '%s' due to inline assembly

Functions which contain inline assembly are not run through the optimizer

since inline assembly may contain constructs which would result in the

optimizer performing incorrectly.

3002: comparison of a signed integer to an unsigned integer detected

Comparing a signed integer value to an unsigned integer value may yield

unexpected results when the signed value is negative. To compare an

unsigned integer to the binary equivalent representation of the signed

value, the signed value should first be explicitly cast to the unsigned type

of the same size.
 2002 Microchip Technology Inc. apRNOUU^-page 89

MPLAB® C18 C Compiler User’s Guide
NOTES:
apRNOUU^-page 90  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE
Glossary
A

absolute section

A section with a fixed address that cannot be changed by the linker.

access memory

Special general purpose registers on the PIC18 PICmicro microcontrollers that allow

access regardless of the setting of the bank select register (BSR).

address

The code that identifies where a piece of information is stored in memory.

anonymous structure

An unnamed object.

ANSI

American National Standards Institute

assembler

A language tool that translates assembly source code into machine code.

assembly

A symbolic language that describes the binary machine code in a readable form.

assigned section

A section that has been assigned to a target memory block in the linker command file.

asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to

interrupts that may occur at any time during processor execution.

B

binary

The base two numbering system that uses the digits 0-1. The right-most digit counts

ones, the next counts multiples of 2, then 22 = 4, etc.

C

central processing unit

The part of a device that is responsible for fetching the correct instruction for execution,

decoding that instruction, and then executing that instruction. When necessary, it works

in conjunction with the arithmetic logic unit (ALU) to complete the execution of the

instruction. It controls the program memory address bus, the data memory address

bus, and accesses to the stack.

compiler

A program that translates a source file written in a high-level language into machine

code.
 2002 Microchip Technology Inc. apRNOUU^-page 91

MPLAB® C18 C Compiler User’s Guide
conditional compilation

The act of compiling a program fragment only if a certain constant expression, specified

by a preprocessor directive, is true.

CPU

Central Processing Unit

E

endianness

The ordering of bytes in a multi-byte object.

error file

A file containing the diagnostics generated by the MPLAB C18

F

fatal error

An error that will halt compilation immediately. No further messages will be produced.

frame pointer

A pointer that references the location on the stack that separates the stack-based

arguments from the stack-based local variables.

free-standing

An implementation that accepts any strictly conforming program that does not use

complex types and in which the use of the features specified in the library clause (ANSI

‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,

<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, and <stdint.h>.

H

hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f).

The digits A-F represent decimal values of 10 to 15. The right-most digit counts ones,

the next counts multiples of 16, then 162 = 256, etc.

high-level language

A language for writing programs that is further removed from the processor than

assembly.

I

ICD

In-Circuit Debugger

ICE

In-Circuit Emulator

IDE

Integrated Development Environment

IEEE

Institute of Electrical and Electronics Engineers

interrupt

A signal to the CPU that suspends the execution of a running application and transfers

control to an ISR so that the event may be processed. Upon completion of the ISR,

normal execution of the application resumes.
apRNOUU^-page 92  2002 Microchip Technology Inc.

Glossary
interrupt service routine

A function that handles an interrupt.

ISO

International Organization for Standardization

ISR

Interrupt Service Routine

L

latency

The time between when an event occurs and the response to it.

librarian

A program that creates and manipulates libraries.

library

A collection of relocatable object modules.

linker

A program that combines object files and libraries to create executable code.

little endian

Within a given object, the least significant byte is stored at lower addresses.

M

memory model

A description that specifies the size of pointers that point to program memory.

microcontroller

A highly integrated chip that contains a CPU, RAM, some form of ROM, I/O ports, and

timers.

MPASM assembler

Microchip Technology's relocatable macro assembler for PICmicro microcontroller

families.

MPLIB object librarian

Microchip Technology's librarian for PICmicro microcontroller families.

MPLINK object linker

Microchip Technology's linker for PICmicro microcontroller families.

O

object file

A file containing object code. It may be immediately executable or it may require linking

with other object code files, e.g. libraries, to produce a complete executable program.

object code

The machine code generated by an assembler or compiler.

octal

The base 8 number system that only uses the digits 0-7. The right-most digit counts

ones, the next digit counts multiples of 8, then 82 = 64, etc.
 2002 Microchip Technology Inc. apRNOUU^-page 93

MPLAB® C18 C Compiler User’s Guide
P

pragma

A directive that has meaning to a specific compiler.

R

RAM

Random Access Memory

random access memory

A memory device in which information can be accessed in any order.

read only memory

Memory hardware that allows fast access to permanently stored data but prevents

addition to or modification of the data.

ROM

Read Only Memory

recursive

Self-referential (e.g., a function that calls itself). See recursive.

reentrant

A function that may have multiple, simultaneously active instances. This may happen

due to either direct or indirect recursion or through execution during interrupt

processing.

relocatable

An object whose address has not been assigned to a fixed memory location.

runtime model

Set of assumptions under which the compiler operates.

S

section

A portion of an application located at a specific address of memory.

section attribute

A characteristic ascribed to a section (e.g., an access section).

special function register

Registers that control I/O processor functions, I/O status, timers, or other modes or

peripherals.

storage class

Determines the lifetime of the memory associated with the identified object.

storage qualifier

Indicates special properties of the objects being declared (e.g., const).

V

vector

The memory locations that an application will jump to when either a reset or interrupt

occurs.
apRNOUU^-page 94  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

USER’S GUIDE

Index
Symbols

#pragmas. See pragmas
--help .. 5
--help-message ... 6
--help-message-all 6
--help-message-list 6
-D ... 7
-fe ... 6
-fo ... 6
-I ... 13
-k ... 9, 71
-ls ... 36
-ml ... 14, 33
-ms ... 14, 33
-nw ... 6
-O- ... 43
-Oa+ ... 22
-Ob+ ... 43, 44
-Ob- ... 43, 44
-Od+ ... 43, 48, 49
-Od- ... 43, 48, 49
-Oi ... 14, 72
-Om+ ... 43, 44
-Om- ... 43
-On+ ... 43, 44
-On- ... 43, 44
-Op+ ... 43, 47, 48, 49
-Op- ... 43, 47
-Opa+ ... 43, 49, 50
-Opa- ... 43, 49
-Or+ ... 43, 48
-Or- ... 43, 48
-Os+ ... 43, 45, 46
-Os- ... 43, 45
-Ot+ ... 43, 46
-Ot- ... 43, 46
-Ou+ ... 43, 47
-Ou- ... 43, 47
-Ow+ ... 43, 45
-Ow- ... 43, 45
-p ... 7, 14, 31, 53
-pa=n ... 50
-sca ... 12
-sco ... 12
-scs ... 12

-verbose .. 5
-w ... 6
.cinit ... 41
.stringtable .. 15
.tmpdata .. 28, 42
__18CXX ... 14
__LARGE__ .. 14
__PROCESSOR .. 14
__SMALL__ .. 14
_asm ... 18, 27, 52
_endasm ... 18, 27, 52

A

access ..22-23, 25, 42
access RAM .. 12, 22, 30

anonymous structures 17, 30

assembler

internal ... 18

vs. MPASM .. 18

MPASM .. 18

assembly

inline ... 18

_asm 18, 27, 52
_endasm 18, 27, 52

mixing with C36-40

auto11-12, 34, 36, 37, 85

B

BSR ... 25, 26, 31, 42

C

char ... 9, 71, 72
signed .. 9, 71
unsigned .. 9, 71

ClrWdt() .. 31
code ..19-24
command-line options5, 75-76

--help .. 5
--help-message 6
--help-message-all 6
--help-message-list 6
-D ... 7
-fe ... 6
-fo ... 6
-I ... 13
-k ... 9, 71
 2002 Microchip Technology Inc. DS51288A-page 95

MPLAB® C18 C Compiler User’s Guide
-ls ...36
-ml ...14, 33
-ms ...14, 33
-nw ...6
-O- ...43
-Oa+ ...22
-Ob+ ...43, 44
-Ob- ...43, 44
-Od+ ...43, 48, 49
-Od- ...43, 48, 49
-Oi ...14, 72
-Om+ ...43, 44
-Om- ...43
-On+ ...43, 44
-On- ...43, 44
-Op+43, 47, 48, 49
-Op- ...43, 47
-Opa+ ...43, 49, 50
-Opa- ...43, 49
-Or+ ...43, 48
-Or- ...43, 48
-Os+ ...43, 45, 46
-Os- ...43, 45
-Ot+ ...43, 46
-Ot- ...43, 46
-Ou+ ...43, 47
-Ou- ...43, 47
-Ow+ ...43, 45
-Ow- ...43, 45
-p ...7, 14, 31, 53
-pa=n ...50
-sca ...12
-sco ...12
-scs ...12
-verbose ..5
-w ...6

command-line usage ..5

compiler temporaries25, 26, 28, 42

compiler-managed resources42

conditional compilation7

configuration bits. See configuration words

configuration words ...32

const ...12, 78

D

data memory pointers. See ram pointers
default section ..21-22

diagnostics ...6, 77-89

level of warning ..6

suppressing ..6

double ...9

E

endianness ..10

extern11, 30, 36, 38, 39, 40

F

far .. 12-13, 22, 33
float ...9
floating-point types 9-10

double ...9
float ...9
vs. IEEE 754 ...10

frame pointer ...34, 42

initializing ..34, 36

FSR0 ...35, 42
FSR1 ...34, 41, 42
FSR2 ...34, 36, 41, 42

G

generic processor ..7

header file ...31

H

hardware stack ..34

header files

generic processor31

processor-specific 30-31

system ..13

user ...13

high-priority interrupt25, 28

I

idata ... 19-22, 24, 41
IEEE 754 ...10

inline assembly ..18

_asm ...18, 27, 52
_endasm18, 27, 52
macros. See macros, inline assembly

int
signed ...9, 14
unsigned ..9

integer promotions ..14

integer types ..9

char ...9, 71, 72
signed ..9, 71
unsigned9, 71

int
signed ..9, 14
unsigned ..9

long
DS51288A-page 96  2002 Microchip Technology Inc.

Index
signed ... 9
unsigned ... 9

long short int 9
short

signed ... 9
unsigned ... 9

short long int 9
signed ... 9
unsigned ... 9

internal assembler .. 18

vs. MPASM .. 18

interrupt

high-priority .. 25, 28

latency ... 28

low-priority ... 25, 28

nesting ... 28

saving and restoring context 25, 28

vectors ... 27

interrupt pragma .. 25-28

interrupt service routine 25-28, 42, 93

interruptlow pragma 25-28

K

keywords

_asm .. 18, 27, 52
_endasm 18, 27, 52
auto 11-12, 34, 36, 37, 85
const .. 12, 78
extern 11, 30, 36, 38, 39, 40
far ... 12-13, 22, 33
near 12-13, 22, 23, 30, 33
overlay ... 11-12
ram ... 12-13
register .. 11
rom 12-13, 15-16, 20, 24
static 11-12, 36, 38
typedef .. 11
volatile .. 12, 30

L

large memory model 33

linker scripts

ACCESSBANK ... 23
SECTION .. 19, 24

little endian ... 10, 93

long
signed .. 9
unsigned .. 9

long short int ... 9
low-priority interrupt 25, 28

M

macros

defining ... 7

inline assembly

ClrWdt() ... 31
Nop() .. 31
Reset() .. 31
Rlcf(...) 31
Rlncf(...) 31
Rrcf(...) 31
Rrncf(...) 31
Sleep() .. 31
Swapf(...) 31

predefined

__18CXX .. 14
__LARGE__ 14
__PROCESSOR 14
__SMALL__ 14

MATH_DATA .. 28, 42
MCC_INCLUDE .. 13
memory models .. 33

default .. 33

large ... 33

overriding ... 33

small ... 33

minimal context ... 25

MPASM .. 18

MPLINK .. 11, 12, 18, 41

N

near12-13, 22, 23, 30, 33
Nop() ... 31

O

optimizations ..43-50

banking ... 43, 44

branch .. 43, 44

code straightening43, 45-46

copy propagation43, 47-48, 49

dead code removal43, 48-49

duplicate string merging 43, 43

procedural abstraction43, 49-50

redundant store removal 43, 48

tail merging ... 43, 46

unreachable code removal 43, 47

WREG content tracking 43, 45

output files .. 6

overlay ..11-12, 23
 2002 Microchip Technology Inc. DS51288A-page 97

MPLAB® C18 C Compiler User’s Guide
P

p18cxxx.h ..31
PC ..42
pointer

frame ..34, 42

initializing34, 36

sizes ...33

stack ...34, 42

pointers

ram ...13, 16
rom ...13, 16, 33
to data memory. See ram pointers
to program memory. See rom pointers

PORTA ..30-31, 32
pragmas

#pragma interrupt25-28
#pragma interruptlow25-28
#pragma sectiontype19-22
#pragma varlocate29

predefined macros

__18CXX ..14
__LARGE__ ..14
__PROCESSOR ..14
__SMALL__ ..14

processor

selection ...7

type ...7

PROD ...42
PRODH ...35
PRODL ...35
program memory pointer. See rom pointers

R

RAM

access ..12, 22, 30

ram ..12-13
pointers ...13, 16

register ...11
register definitions file30, 32

reset vector ...41

Reset() ...31
RETFIE. See return from interrupt25
return from interrupt25, 26

return value

location ...35

Rlcf(...) ..31
Rlncf(...) ..31
rom12-13, 15-16, 20, 24

pointers ...13, 16, 33

romdata15, 19, 20, 21, 24
Rrcf(...) ...31
Rrncf(...) ...31
runtime model ...42

S

section ...19

.cinit ...41

.stringtable ..15

.tmpdata ..28, 42
absolute ..19

assigned ...19

attributes ...21, 23

code ... 19-24
default ... 21-22

idata 19-22, 24, 41
MATH_DATA ..28, 42
romdata15, 19, 20, 21, 24
udata19, 20, 21, 22, 24, 25
unassigned ...19

section attributes

access 22-23, 25, 42
overlay ...23

section type pragma 19-22

SFR. See special function registers
shadow registers25, 28

short
signed ...9
unsigned ..9

short long int ..9
signed ...9
unsigned ..9

sizes

pointer ...33

Sleep() ...31
small memory model33

software stack12, 25, 28, 34, 35, 36, 37, 41

large ..36

special function registers25, 30, 31, 32, 42

BSR ...25, 26, 31, 42
FSR0 ...35, 42
FSR1 ...34, 41, 42
FSR234, 36, 41, 42
PC ...42
PORTA ... 30-31, 32
PROD ...42
PRODH ...35
PRODL ...35
STATUS ...26, 42
TABLAT ...42
DS51288A-page 98  2002 Microchip Technology Inc.

Index
TBLPTR .. 42
WREG 25, 26, 31, 35, 37, 42

stack

hardware .. 34

pointer .. 34, 42

software 12, 25, 28, 34, 35, 36, 37, 41

large .. 36

startup code ... 41-42

customizing .. 42

static ... 11-12, 36, 38
STATUS .. 25, 26, 42
storage classes ... 11-12

auto 11-12, 34, 36, 37, 85
extern 11, 30, 36, 38, 39, 40
overlay ... 11-12
register .. 11
static 11-12, 36, 38
typedef .. 11

storage qualifiers 12-13

const .. 12, 78
far ... 12-13, 22, 33
near 12-13, 22, 23, 30, 33
ram ... 12-13
rom 12-13, 15-16, 20, 24
volatile .. 12, 30

structures

anonymous .. 17, 30

Swapf(...) .. 31

T

TABLAT .. 42
TBLPTR .. 42
temporaries

compiler 25, 26, 28, 42

typedef .. 11

U

udata 19, 20, 21, 22, 24, 25

V

varlocate pragma .. 29

volatile .. 12, 30

W

WREG 25, 26, 31, 35, 37, 42
 2002 Microchip Technology Inc. DS51288A-page 99

DS51288A-page 100  2002 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02

WORLDWIDE SALES AND SERVICE

	Table of Contents
	Chapter 1. Introduction
	1.1 Overview
	1.2 Invoking the Compiler
	1.2.1 Creating Output Files
	1.2.2 Displaying Diagnostics
	1.2.3 Defining Macros
	1.2.4 Selecting the Processor

	Chapter 2. Language Specifics
	2.1 Data Types and Limits
	2.1.1 Integer Types
	2.1.2 Floating-Point Types

	2.2 Data Type Storage - Endianness
	2.3 Storage Classes
	2.3.1 Overlay
	2.3.2 static Function Arguments

	2.4 Storage Qualifiers
	2.4.1 near/far Data Memory Objects
	2.4.2 near/far Program Memory Objects
	2.4.3 ram/rom Qualifiers

	2.5 Include File Search Paths
	2.5.1 System Header Files
	2.5.2 User Header Files

	2.6 Predefined Macro Names
	2.7 ISO Divergences
	2.7.1 Integer Promotions
	2.7.2 Numeric Constants
	2.7.3 String Constants

	2.8 Language Extensions
	2.8.1 Anonymous Structures
	2.8.2 Inline Assembly

	2.9 Pragmas
	2.9.1 #pragma sectiontype
	2.9.2 #pragma interruptlow fname #pragma interrupt fname
	2.9.3 #pragma varlocate bank variable-name #pragma varlocate section-name variable-name

	2.10 Processor-Specific Header Files
	2.11 Processor-Specific Register Definitions Files
	2.12 Configuration Words

	Chapter 3. Runtime Model
	3.1 Memory Models
	3.2 Calling Conventions
	3.2.1 Return Values
	3.2.2 Managing the Software Stack
	3.2.3 Mixing C and Assembly

	3.3 Startup Code
	3.3.1 Default Behavior
	3.3.2 Customization

	3.4 Compiler-Managed Resources

	Chapter 4. Optimizations
	4.1 Duplicate String Merging �Om+ / �Om�
	4.2 Branches �Ob+ / �Ob�
	4.3 Banking �On+ / �On�
	4.4 WREG Content Tracking �Ow+ / �Ow�
	4.5 Code Straightening �Os+ / �Os�
	4.6 Tail Merging �Ot+ / �Ot�
	4.7 Unreachable Code Removal �Ou+ / �Ou�
	4.8 Copy Propagation �Op+ / �Op�
	4.9 Redundant Store Removal �Or+ / �Or�
	4.10 Dead Code Removal �Od+ / �Od�
	4.11 Procedural Abstraction �Opa+ / �Opa�

	Chapter 5. Sample Application
	Appendix A. COFF File Format
	Appendix B. ANSI Implementation-Defined Behavior
	Appendix C. Command-Line Summary
	Appendix D. MPLAB C18 Diagnostics
	Glossary
	Index
	Worldwide Sales and Service

